

REVISED GEOTECHNICAL DUE DILIGENCE ASSESSMENT 4.9±-ACRE PARCEL ADJACENT TO THE NORTHWEST SIDE OF THE INTERSECTION OF N. ASH STREET AND LEHNER AVENUE ASSESSOR PARCEL NUMBER (APN) 224-130-10-00 CITY OF ESCONDIDO, SAN DIEGO COUNTY, CALIFORNIA

ESCONDIDO NORTH, LLC

May 18, 2022 J.N. 21-374

ENGINEERS + GEOLOGISTS + ENVIRONMENTAL SCIENTISTS

May 18, 2022 J.N. 21-374 Revision 2

ESCONDIDO NORTH, LLC

30200 Rancho Viejo Road, Suite B San Juan Capistrano, California 92675

Attention: Mr. Dylan Bird

Subject:Revised Geotechnical Due Diligence Assessment; 4.9±-Acre Parcel Adjacent to the
Northwest Side of the Intersection of N. Ash Street and Lehner Avenue, Assessor
Parcel Number (APN) 224-130-10-00, City of Escondido, San Diego County,
California

Dear Mr. Bird:

Petra Geosciences, Inc. (Petra) is submitting herewith our revised geotechnical due diligence assessment report for the 4.9±-acre parcel adjacent the northwest side of the intersection of N. Ash Street and Lehner Avenue, Assessor Parcel Number (APN) 224-130-10-00, within the city of Escondido, San Diego County, California. This work was performed in general accordance with the scope of work outlined in our Proposal No. 21-374P dated August 16, 2021. This report presents the results of our field exploration, laboratory testing, and our engineering judgment, opinions, conclusions, and recommendations pertaining to preliminary geotechnical design aspects for the proposed residential development.

It has been a pleasure to be of service to you on this project. Should you have questions regarding the contents of this report or should you require additional information, please contact this office.

Respectfully submitted,

PETRA GEOSCIENCES, INC.

Jonathan Cain Senior Associate Geologist

J. Montgomery Schultz Associate Engineer GE 2941

Offices Strategically Positioned Throughout Southern California RIVERSIDE COUNTY OFFICE 40880 County Center Drive, Suite M, Temecula, CA 92591 T: 951.600.9271 F: 951.719.1499 For more information visit us online at www.petra-inc.com

ESCONDIDO NORTH, LLC

4.9-Acre Parcel, N. Ash Street / Escondido

TABLE OF CONTENTS

INTRODUCTION	1
PURPOSE AND SCOPE OF SERVICES	1
LOCATION AND SITE DESCRIPTION	2
PROPOSED CONSTRUCTION	2
Literature Review	2
Subsurface Exploration	3
Laboratory Testing	3
Percolation Borings	3
FINDINGS	4
Regional Geologic Setting	4
Local Geology and Subsurface Soil Conditions	4
Groundwater	5
Faulting	5
Strong Ground Motions	5
Landslides and Secondary Seismic Effects	5
Liquefaction and Seismically-Induced Settlement	6
Compressible Soils	7
Flooding	7
Expansive Soils	/
CONCLUSIONS AND RECOMMENDATIONS	7
General	7
Earthwork	7
General Earthwork Recommendations	7
Geotechnical Observations and Testing	8
Clearing and Grubbing	8
Ground Preparation – Unsuitable Soil Removals	8
Fill Placement and Testing	9
Import Soils for Grading	9
Shrinkage and Subsidence	9
Temporary Excavations	.10
Preliminary Foundation Design Considerations	.10
Foundation Systems	.10
Seismic Design Parameters	.10
Allowable Soil Bearing Capacities	.14
Footing Settlement	.14
Lateral Resistance	.14
Guidelines for Footings and Slabs on-Grade Design and Construction	.15
General Conventional Slab on Creda System	.15
Conventional State-on-Orade System	.10
Fost-relisioned Stabs on-Oracle System (Optional)	.10
Ceneral Correspirity Screening	.21
Post-Grading Recommendations	.21
Laboratory Testing	.22
Site Drainage	.22
Utility Trenches	.23
Plan Review and Construction Services	.23
	.24
REFERENCES	.26

ATTACHMENTS

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 TENTATIVE SUBDIVISION MAP (SHEET 2 OF 3)
- FIGURE 3 EXPLORATION LOCATION MAP
- APPENDIX A EXPLORATION LOGS
- APPENDIX B LABORATORY TEST PROCEDURES / LABORATORY DATA SUMMARY
- APPENDIX C SEISMIC DESIGN DATA
- APPENDIX D PERCOLATION TEST DATA AND FORM I-5

REVISED GEOTECHNICAL DUE DILIGENCE ASSESSMENT 4.9±-ACRE PARCEL ADJACENT THE NORTHWEST SIDE OF THE INTERSECTION OF N. ASH STREET AND LEHNER AVENUE ASSESSOR PARCEL NUMBER (APN) 224-130-10-00 CITY OF ESCONDIDO, SAN DIEGO COUNTY, CALIFORNIA

INTRODUCTION

Petra Geosciences, Inc. (Petra) is presenting herein the results of our revised geotechnical due diligence assessment for the proposed development of the 4.9±-acre parcel adjacent the northwest side of the intersection of N. Ash Street and Lehner Avenue, Assessor Parcel Number (APN) 224-130-10-00, within the city of Escondido, San Diego County, California. This assessment included a review of published and unpublished literature, site reconnaissance and subsurface exploration, as well as a review of geotechnical maps pertaining to geologic hazards which may have an impact on the proposed residential construction.

PURPOSE AND SCOPE OF SERVICES

The purposes of this study were to evaluate earth materials underlying the property, review available geotechnical information pertaining to the project site and provide recommendations pertaining to feasibility of site development from a geotechnical engineering viewpoint as influenced by the subsurface conditions encountered.

The scope of our assessment consisted of the following.

- Performed a site reconnaissance and conducted geologic mapping of the property to evaluate existing onsite conditions and to coordinate with the local underground utility locating service (Underground Service Alert) to obtain an underground utility clearance prior to commencement of our subsurface evaluation.
- Reviewed available published and unpublished geologic data, maps, available online aerial imagery and geotechnical documents concerning geologic and soil conditions within, and adjacent to the site which could have an impact on the proposed improvements.
- Excavated seven (7) exploratory borings within the site to a maximum depth of 15.9 feet below ground surface (bgs). The borings were excavated utilizing a truck-mounted drill rig equipped with hollow-stem augers to evaluate the stratigraphy of the subsurface earth materials and collect representative undisturbed and bulk samples for subsequent laboratory testing.
- One of the borings was excavated within the area of the proposed water quality basin and converted into a shallow percolation boring to evaluate the infiltration characteristics of the soils in the area of the proposed WQMP basin.
- A falling head percolation test was conducted on the percolation boring in general compliance with City of Escondido and/or County of San Diego standards.
- Logged and field-classified soil materials encountered in each boring in accordance with the visualmanual procedures outlined in the Unified Soil Classification System and the American Society for Testing and Materials (ASTM) Procedure D2488-90.

- Preformed appropriate laboratory testing of representative samples (bulk and undisturbed) obtained from the exploratory borings to determine their engineering properties.
- Performed appropriate engineering and geologic analysis of the data with respect to the proposed improvements.
- Prepared this report, including pertinent figures and appendices presenting the results of our assessment and recommendations for the proposed improvements, in general conformance with the requirements of the 2019 California Building Code (CBC), as well as in accordance with applicable local jurisdictional requirements.

LOCATION AND SITE DESCRIPTION

The subject site is located adjacent the northwest side of the intersection of N. Ash Street and Lehner Avenue, within the City of Escondido, San Diego County, California. The site, which encompasses approximately 4.9±acres, is a somewhat rectangular-shaped property comprised of one parcel of land identified as Assessor Parcel Numbers (APN) 224-130-10-00. Topographically, site elevations range from approximately 744 feet above mean sea level (msl) within the north portion of the site to approximately 727 feet above msl within the southwest portion of the site along Lehner Avenue. Site vegetation consists of native grasses and weeds with several mature palm trees within the south portion of the site. The location of the site is shown on Figure 1.

PROPOSED CONSTRUCTION

Based on a Tentative subdivision map (Sheet 2 of 3) by Pasco Laret Suiter and Associates., the site is proposed to be developed as a residential tract. The tract will consist of a cul-de-sac street (street A), nineteen (19) single-family residential lots (Lots 1 through 10 and 12 through 20), one very low income unit (Lot 11), and a biofiltration basin (Lot A). A copy of the tentative subdivision map is attached as Figure 2. At this time, no specific development plans have been provided for our review. However, it is assumed the structures will utilize typical wood-frame construction with either conventional or post-tension slab-on-ground foundation systems. Building loads are assumed to be typical for this type of relatively light residential construction.

Literature Review

Petra researched and reviewed available published and unpublished geologic data, maps and aerial imagery pertaining to regional geology, faulting and geologic hazards that may affect the site. The results of this review are discussed in the Findings section of this report.

Subsurface Exploration

A subsurface exploration program was performed under the direction of an engineering geologist from Petra on August 31, 2021. The exploration involved the excavation of seven (7) exploratory borings (B-1 through B-6 and P-1) to a maximum depth of approximately 15.9 feet below existing grades, and/or practical refusal. The borings were advanced utilizing a truck-mounted drill rig equipped with hollow-stem augers. Earth materials encountered within the exploratory borings were classified and logged by an engineering geologist in accordance with the visual-manual procedures of the Unified Soil Classification System (USCS), ASTM Test Standard D2488. The approximate locations of the exploratory borings are shown on Figure 3. The logs for the borings are presented in Appendix A.

Relatively undisturbed ring and disturbed bulk samples of representative earth materials were collected from the exploratory borings for classification, laboratory testing and engineering analyses. Undisturbed samples were obtained using a 3-inch outside diameter modified California split-spoon soil sampler lined with brass rings. The soil sampler was driven with successive 30-inch drops of a free-fall, 140-pound hammer. The central portions of the driven-core samples were placed in sealed containers and transported to our laboratory for testing. The number of blows required to drive the split-spoon sampler 18 inches into the soil in 6-inch increments were recorded and noted on the boring logs.

Laboratory Testing

The laboratory testing program included the determination of in-situ dry density and moisture content, insitu and maximum dry density and in-situ and optimum moisture content; expansion index, and preliminary soil corrosivity screening (soluble sulfate and chloride content, pH and minimum resistivity). A description of laboratory test methods and summaries of the laboratory test data are presented in Appendix B and the in-situ dry density and moisture content results are presented on the boring logs (Appendix A).

Percolation Borings

One percolation boring was drilled within the southwest portion of the property in the general location of the water quality basin. The proposed bottom depth of the basin was unknown during the time of our assessment, so the 8-inch diameter boring was advanced to 10 feet below existing grade. Soils encountered in the percolation boring P-1 consisted of sandy clay, clayey sand and medium grained monzogranite bedrock.

A three-inch diameter perforated casing was installed within the borehole and the annular space packed with gravel. The hole was pre-soaked immediately after drilling and casing installation. The zone consisting of the bottom 5 feet of the borehole was utilized for percolation testing. Percolation testing was conducted by one of Petra's staff personnel.

The falling-head percolation test data from the boring (Test P-1) was utilized in determining the test infiltration rate, I_t , expressed in units of inches/hour, utilizing the Porchet Method (RCFCWCD, 2011). The infiltration rate, I_t , was calculated for the test by determining the volumetric water flow through the wetted borehole surface area, expressed in terms of inches per hour. The falling-head percolation test yielded an un-factored infiltration rate of 0.01 inches per hour. Test data for the percolation test is attached in Appendix D along with a copy of the categorization of infiltration feasibility condition form I-5.

FINDINGS

Regional Geologic Setting

Geologically, the site lies within the northern portion of the Peninsular Ranges Geomorphic Province. The Peninsular Range region extends from the tip of Baja California to the Transverse Ranges and the Los Angeles Basin and is characterized by northwest trending mountain ranges separated by subparallel fault zones. In general, the province is underlain primarily of plutonic rock of the Southern California Batholith. The Peninsular Range Geomorphic Province is generally characterized by alluviated basins and elevated erosion surfaces.

More specifically, the subject site lies within the rolling foothills east of Escondido. According to the 7.5 Minute Geologic Map of the Valley Center Quadrangle (Kennedy 1999), Pleistocene-age Older Alluvial Flood Plain Deposits which are moderately well consolidated, poorly sorted, permeable flood plain deposits underlie the site. These Older Alluvial Flood Plain Deposits are underlain by Cretaceous-age Granitic rocks (Monzogranite) of the Southern California Batholith.

Local Geology and Subsurface Soil Conditions

Several geologic units were encountered during our due diligence assessment of the site. The earth materials encountered within our exploratory borings consist of topsoil, older alluvial deposits, and Cretaceous age bedrock of the Southern California Batholith. These units, from younger to older, are described below.

<u>Topsoil</u>: Topsoil mantles the majority of the site. These soils were comprised of fine to coarse grained silty sands, clayey sands and sandy clay that were various hues of reddish brown to gray brown, dry to damp and loose.

<u>Older Alluvial Deposit (Qoal)</u>: Older alluvial deposits were encountered within all the exploratory borings. These soil deposits were fine- to coarse-grained silty sands, clayey sands, and sandy clays which were observed to be reddish brown, grayish brown, and brown, damp to moist, and firm to stiff/medium dense to very dense.

<u>Granitic Bedrock:</u> Cretaceous-age granitic bedrock was observed within the bottom of the exploratory borings (B-1 through B-5 and P-1). The granitic rock was reddish brown, yellowish brown, gray brown and gray, moderately weathered and hard.

Groundwater

The site is located within the Escondido Valley Groundwater Basin (California Department of Water Resources, [CDWR], 2004). Two historic groundwater wells were listed within the vicinity of subject site on the CDWR water data library (CDWR, 2021). Based on our review, historic groundwater levels within the vicinity range between $2\pm$ and $28\pm$ feet below the ground surface. In general, groundwater depth varies within the area and though flow direction beneath the subject site is unknown, it is reasonable to estimate flow to follow regional topography toward the west-southwest.

Faulting

Based on our review of published geologic maps, no faults are known to project through the property, and no portion of the site lies within an Earthquake Fault Hazard Zone as designated by the State of California pursuant to the Alquist-Priolo Earthquake Zoning Act (CGS, 1977). No evidence for lineal topography was observed in aerial photographs reviewed. The closest known active earthquake fault is the Elsinore fault zone which has been mapped approximately $12(\pm)$ miles northeast of the site (Kennedy and Tan, 2005).

Strong Ground Motions

The site is located in a seismically active area of southern California and will likely be subjected to very strong seismically related ground shaking over the anticipated life span of the project. Structures within the site should therefore be designed and constructed to resist the effects of strong ground motion in accordance with the 2019 California Building Code (CBC) and the seismic parameters included in the recommendations section herein.

Landslides and Secondary Seismic Effects

The site and immediate area exhibit gently sloping topography that is not prone to landsliding. Secondary effects of seismic activity normally considered as possible hazards to a site include several types of ground failure. Various general types of ground failures, which might occur as a consequence of severe ground shaking at the site, include ground subsidence, ground lurching and lateral spreading. The probability of

occurrence of each type of ground failure depends on the severity of the earthquake, distance from faults, topography, subsoil and groundwater conditions, in addition to other factors. Based on the site conditions, proposed grading and gentle topography across the site, landsliding, ground subsidence and lateral spreading are considered unlikely at the site. However, due to the close proximity of the site to the Elsinore Fault Zone, significant ground shaking should be anticipated during a seismic event.

Seismically induced flooding that might be considered a potential hazard to a site normally includes flooding due to tsunami or seiche (i.e., a wave-like oscillation of the surface of water in an enclosed basin that may be initiated by a strong earthquake) or failure of a major reservoir or retention structure upstream of the site. Lake Dixon is the closest reservoir located approximately 2.0 miles east-southeast of the subject site. Drainage from the dam is to the southeast, therefore, the potential for seiche or inundation is considered negligible. Because of the inland location of the site, flooding due to a tsunami is also considered negligible at the site.

Liquefaction and Seismically-Induced Settlement

Assessment of liquefaction potential for a particular site requires knowledge of a number of regional as well as site-specific parameters, including the estimated design earthquake magnitude, the distance to the assumed causative fault and the associated probable peak horizontal ground acceleration at the site, subsurface stratigraphy and soil characteristics, and groundwater elevation. Parameters such as distance to causative faults, estimated probable peak horizontal ground acceleration can readily be determined using published references, or by utilizing a commercially available computer program specifically designed to perform a probabilistic analysis. On the other hand, stratigraphy and soil characteristics can only be accurately determined by means of a site-specific subsurface evaluation combined with appropriate laboratory analysis of representative samples of onsite soils.

Liquefaction occurs when dynamic loading of a saturated sand or silt causes pore-water pressures to increase to levels where grain-to-grain contact is lost and material temporarily behaves as a viscous fluid. Liquefaction can cause settlement of the ground surface, settlement and tilting of engineered structures, flotation of buoyant buried structures and fissuring of the ground surface. A common manifestation of liquefaction is the formation of sand boils – short-lived fountains of soil and water that emerge from fissures or vents and leave freshly deposited conical mounds of sand or silt on the ground surface.

In view of the recommended grading and shallow bedrock materials that underlie the site, the potential for manifestation of liquefaction induced features or significant dynamic settlement is considered negligible.

Compressible Soils

A significant geotechnical factor affecting the project site is the presence of near-surface compressible topsoil and weathered older alluvial deposits. Such materials in their present state are not considered suitable for support of fill or structural loads. Accordingly, these materials will require removal to competent older alluvial deposit soils or granitic bedrock and replacement as properly compacted fill.

Flooding

Based on our review, storm water in the form of localized sheet flooding and/or channelized flows from adjacent properties has the potential to affect the site. Based on current site configurations, it is anticipated a drainage study will be performed by the project civil engineer. As such, the potential for localized surface flooding is considered low.

Expansive Soils

Based on our recent tests, the silty sand soils encountered within the site were found to have a Very Low to Low expansion potential (Elevation Index of 0-50). Since site grading remains to be completed, additional sampling and laboratory testing is recommended for expansion, as well as general corrosion potential, once rough grading is complete for the purposes of providing final foundation design recommendations.

CONCLUSIONS AND RECOMMENDATIONS

General

From a geotechnical engineering and engineering geologic point of view, the subject property is considered suitable for the proposed residential development provided the following conclusions and recommendations are incorporated into the design criteria and project specifications.

Earthwork

General Earthwork Recommendations

Earthwork should be performed in accordance with the applicable provisions of the 2019 CBC. Grading should also be performed in accordance with the following site-specific recommendations prepared by Petra based on the proposed residential development of the site.

Geotechnical Observations and Testing

Prior to the start of earthwork, a meeting should be held at the site with the owner, contractor and geotechnical consultant to discuss the work schedule and geotechnical aspects of the grading. Earthwork, which in this instance will generally entail removal and re-compaction of the near surface soils, should be accomplished under full-time observation and testing of the geotechnical consultant. A representative of the project geotechnical consultant should be present onsite during all earthwork operations to document proper placement and compaction of fills, as well as to document compliance with the other recommendations presented herein.

Clearing and Grubbing

The majority of the property has a light to occasionally moderate amount of vegetation cover and numerous mature trees. All surficial or buried vegetation, trees and stumps (including the root ball), miscellaneous debris and/or other deleterious materials will require clearing and hauling offsite. It is anticipated that buried roots and/or any miscellaneous debris will need to be removed from the engineered fills by hand (root pickers) during grading operations.

The project geotechnical consultant should provide periodic observation and testing services during clearing and grubbing operations to document compliance with the above recommendations. In addition, should any unusual or adverse soil conditions be encountered during grading that are not described herein, these conditions should be brought to the immediate attention of the project geotechnical consultant for corrective recommendations, as warranted.

Ground Preparation – Unsuitable Soil Removals

Based on the earth materials encountered within the exploratory borings, surficial soils (i.e. topsoil and weathered older alluvium) over a majority of the site are considered unsuitable for support of structures in their existing state, and therefore should be removed and recompacted, in areas proposed for settlement sensitive improvements. In areas where structures are to be supported by conventional shallow slab-on-grade foundations, spread footings, and/or post-tension foundations the existing ground should be over-excavated to depths that expose competent materials exhibiting an in-place relative compaction of 85 percent or more, based on ASTM Test Method D 1557.

Therefore, the required depths of remedial removals are anticipated to vary from approximately 1 to 3 feet. Removal of existing fills may extend to depths of 5 feet or possibly more. A minimum of 5 feet of compacted fill should cap all building pads. The horizontal limits of over-excavation should extend to a

minimum distance of 5 feet beyond the proposed perimeter foundation lines or to a horizontal distance equal to the depth of remedial removals, whichever is greater.

All lots should be evaluated for shallow-to-deep-fill transitions. The areas of shallow fill should be deepened if they are less than one-half the depth of the deepest fill to reduce the potential for excessive differential settlement.

Due to the variability of the near surface earth materials that underlie the project site, the required depths of over-excavation will have to be determined during grading on a case-by-case basis. Therefore, prior to placing compacted fill, the exposed bottom surfaces in all over-excavated areas should be observed and approved by the project geotechnical consultant. Following this approval, the exposed bottom surfaces should be scarified to a depth of approximately 6 to 8 inches, watered as necessary to achieve a moisture content that is equal to or slightly above optimum moisture content, and then processed to a relative compaction of 90 percent or more with reference to ASTM D 1557.

Fill Placement and Testing

All fill should be placed in lifts not exceeding 8 inches in thickness, watered as necessary to achieve moisture contents that are equal to, or slightly above optimum moisture content, and then compacted to a minimum relative compaction of 90 percent or more. Each fill lift should be treated in a similar manner. Subsequent lifts should not be placed until the preceding lift has been tested and approved by the project geotechnical consultant. The laboratory maximum dry density and optimum moisture content for each change in soil type should be determined in accordance with Test Method ASTM D 1557.

Import Soils for Grading

We assume the site will be designed to grade to balance and that import soils will not be needed to achieve final design grades; however, if needed, any import soils should be free of deleterious materials, oversize rock and any hazardous materials. The soils should also be non-expansive and essentially non-corrosive and approved by the project geotechnical consultant *prior* to being brought onsite. The geotechnical consultant should inspect the potential borrow site and conduct testing of the soil at least three days before the commencement of import operations.

Shrinkage and Subsidence

Volumetric changes in earth quantities will occur when excavated onsite soils are replaced as properly compacted fill. Accordingly, it is estimated that a shrinkage factor on the order of approximately 5 to 10

percent will occur when near surface onsite earth materials are excavated and placed as compacted fill. Subsidence from scarification and re-compaction of exposed bottom surfaces in over-excavated areas is expected to be on the order of approximately 0.05 to 0.10 feet.

The above estimates of shrinkage and subsidence are intended as aids for the civil engineer and project planners in determining earthwork quantities. However, these values should not be considered as absolute values and some contingencies should be made for balancing earthwork quantities on the basis of actual shrinkage and subsidence that occur during grading.

Temporary Excavations

Temporary excavations varying up to a height of 10 feet below existing grades may be required to accommodate the recommended overexcavation of unsuitable materials. Based on the physical properties of the onsite soils, temporary excavations which are constructed exceeding 4 feet in height should be cut back to a ratio of 1:1 (h:v) or flatter for the duration of the overexcavation of unsuitable soil material and replacement as compacted fill, as well as placement of underground utilities. However, the temporary excavations should be observed by a representative of the project geotechnical consultant for evidence of potential instability. Depending on the results of these observations, revised slope configurations may be warranted. Other factors which should be considered with respect to the stability of the temporary slopes include construction traffic and/or storage of materials on or near the tops of the slopes, construction scheduling, presence of nearby walls or structures on adjacent properties and weather conditions at the time of construction. Applicable requirements of the California Construction Safety Act should also be followed.

Preliminary Foundation Design Considerations

Foundation Systems

Either conventional or post-tension slab-on-ground foundation systems are deemed to be suitable for the proposed residences, providing the site is prepared as recommended in this report. Recommendations for the design and construction of both options are presented herein.

Seismic Design Parameters

Earthquake loads on earthen structures and buildings are a function of ground acceleration which may be determined from the site-specific ground motion analysis. Alternatively, a design response spectrum can be developed for certain sites based on the code guidelines. To provide the design team with the parameters

necessary to construct the design acceleration response spectrum for this project, we used two computer applications. Specifically, the first computer application, which was jointly developed by Structural Engineering Association of California (SEAOC) and California's Office of Statewide Health Planning and Development (OSHPD), the SEA/OSHPD Seismic Design Maps Tool website, <u>https://seismicmaps.org</u>, is used to calculate the ground motion parameters. The second computer application, the United Stated Geological Survey (USGS) Unified Hazard Tool website, <u>https://earthquake.usgs.gov/hazards/interactive/</u>, is used to estimate the earthquake magnitude and the distance to surface projection of the fault.

To run the above computer applications, site latitude and longitude, seismic risk category and knowledge of site class are required. The site class definition depends on the direct measurement and the ASCE 7-16 recommended procedure for calculating average small-strain shear wave velocity, Vs30, within the upper 30 meters (approximately 100 feet) of site soils.

A seismic risk category of II was assigned to the proposed building in accordance with 2019 CBC, Table 1604.5. No shear wave velocity measurement were performed at the site, as such, in accordance with ASCE 7-16, Table 20.3-1, Site Class D (D- Default as per SEA/OSHPD software) has been assigned to the subject site.

The following table, Table 1, provides parameters required to construct the seismic response coefficient, C_s , curve based on ASCE 7-16, Article 12.8 guidelines. A printout of the computer output is attached in Appendix C.

ESCONDIDO NORTH, LLC

4.9-Acre Parcel, N. Ash Street / Escondido

TABLE 1

Seismic Design Parameters

Ground Motion Parameters	Specific Reference	Parameter Value	Unit
Site Latitude (North)	-	33.1570	0
Site Longitude (West)	-	-117.0858	0
Site Class Definition	Section 1613.2.2 ⁽¹⁾ , Chapter 20 ⁽²⁾	D-Default ⁽⁴⁾	-
Assumed Seismic Risk Category	Table 1604.5 (1)	II	-
M _w - Earthquake Magnitude	USGS Unified Hazard Tool ⁽³⁾	7.7 ⁽³⁾	-
R – Distance to Surface Projection of Fault	USGS Unified Hazard Tool ⁽³⁾	21.1 (3)	km
S _s - Mapped Spectral Response Acceleration Short Period (0.2 second)	Figure 1613.2.1(1) ⁽¹⁾	0.932 (4)	g
S ₁ - Mapped Spectral Response Acceleration Long Period (1.0 second)	Figure 1613.2.1(2) ⁽¹⁾	0.339 (4)	g
F _a – Short Period (0.2 second) Site Coefficient	Table 1613.2.3(1) ⁽¹⁾	1.2 (4)	-
Fv – Long Period (1.0 second) Site Coefficient	Table 1613.2.3(2) ⁽¹⁾	Null ⁽⁴⁾	-
S _{MS} – MCE _R Spectral Response Acceleration Parameter Adjusted for Site Class Effect (0.2 second)	Equation 16-36 ⁽¹⁾	1.118 (4)	g
S _{M1} - MCE _R Spectral Response Acceleration Parameter Adjusted for Site Class Effect (1.0 second)	Equation 16-37 ⁽¹⁾	Null ⁽⁴⁾	g
S _{DS} - Design Spectral Response Acceleration at 0.2-s	Equation 16-38 ⁽¹⁾	0.746 (4)	g
S _{D1} - Design Spectral Response Acceleration at 1-s	Equation 16-39 ⁽¹⁾	Null ⁽⁴⁾	g
$T_{o} = 0.2 \ S_{D1} / \ S_{DS}$	Section 11.4.6 ⁽²⁾	Null	S
$T_{s} = S_{Dl} / S_{DS}$	Section 11.4.6 ⁽²⁾	Null	S
T _L - Long Period Transition Period	Figure 22-14 ⁽²⁾	8 (4)	s
PGA - Peak Ground Acceleration at MCE _G ^(*)	Figure 22-9 ⁽²⁾	0.404	g
F _{PGA} - Site Coefficient Adjusted for Site Class Effect ⁽²⁾	Table 11.8-1 ⁽²⁾	1.2 (4)	-
PGA _M –Peak Ground Acceleration ⁽²⁾ Adjusted for Site Class Effect	Equation 11.8-1 ⁽²⁾	0.484 (4)	g
Design PGA \approx (² / ₃ PGA _M) - Slope Stability ^(†)	Similar to Eqs. 16-38 & 16-39 ⁽²⁾	0.323	g
Design PGA $\approx (0.4 \text{ S}_{\text{DS}})$ – Short Retaining Walls ^(‡)	Equation 11.4-5 ⁽²⁾	0.298	g
C _{RS} - Short Period Risk Coefficient	Figure 22-18A ⁽²⁾	0.92 (4)	-
C _{R1} - Long Period Risk Coefficient	Figure 22-19A ⁽²⁾	0.922 (4)	-
SDC - Seismic Design Category ^(§)	Section 1613.2.5 ⁽¹⁾	Null ⁽⁴⁾	-

References:

⁽¹⁾ California Building Code (CBC), 2019, California Code of Regulations, Title 24, Part 2, Volume I and II.

⁽²⁾ American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI), 2016, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, Standards 7-16.

(3) USGS Unified Hazard Tool - https://earthquake.usgs.gov/hazards/interactive/

⁽⁴⁾ SEI/OSHPD Seismic Design Map Application – <u>https://seismicmaps.org</u>

Related References:

Federal Emergency Management Agency (FEMA), 2015, NEHERP (National Earthquake Hazards Reduction Program) Recommended Seismic Provision for New Building and Other Structures (FEMA P-1050).

Notes:

PGA Calculated at the MCE return period of 2475 years (2 percent chance of exceedance in 50 years).

PGA Calculated at the Design Level of ²/₃ of MCE; approximately equivalent to a return period of 475 years (10 percent chance of exceedance in 50 years).

PGA Calculated for short, stubby retaining walls with an infinitesimal (zero) fundamental period.

The designation provided herein may be superseded by the structural engineer in accordance with Section 1613.2.5.1, if applicable.

Discussion - General

Owing to the characteristics of the subsurface soils, as defined by Site Class D-Default designation, and proximity of the site to the sources of major ground shaking, the site is expected to experience strong ground shaking during its anticipated life span. Under these circumstances, where the code-specified design response spectrum may not adequately characterize site response, the 2019 CBC typically requires a site-specific seismic response analysis to be performed. This requirement is signified/identified by the "null" values that are output using SEA/OSHPD software in determination of short period, but mostly, in determination of long period seismic parameters, see Table 1.

For conditions where a "null" value is reported for the site, a variety of design approaches are permitted by 2019 CBC and ASCE 7-16 in lieu of a site-specific seismic hazard analysis. For any specific site, these alternative design approaches, which include Equivalent Lateral Force (ELF) procedure, Modal Response Spectrum Analysis (MRSA) procedure, Linear Response History Analysis (LRHA) procedure and Simplified Design procedure, among other methods, are expected to provide results that may or may not be more economical than those that are obtained if a site-specific seismic hazards analysis is performed. These design approaches and their limitations should be evaluated by the project structural engineer.

Discussion – Seismic Design Category

Please note that the Seismic Design Category, SDC, is also designated as "null" in Table 1. For the condition where the mapped spectral response acceleration parameter at 1 - second period, S_1 , is less than 0.75, the 2019 CBC, Section 1613.2.5.1 allows that seismic design category to be determined from Table 1613.2.5(1) alone provided that all 4 requirements concerning <u>fundamental period of structure</u>, <u>story drift</u>, <u>seismic response coefficient</u>, and <u>relative rigidity of the diaphragms</u> are met. Our interpretation of ASCE 7-16 is that for conditions where one or more of these 4 conditions are not met, seismic design category should be assigned based on: 1) 2019 CBC, Table 1613.2.5(1), 2) structure's risk category and 3) the value of S_{DS} , at the discretion of the project structural engineer.

Discussion – Equivalent Lateral Force Method

Should the Equivalent Lateral Force (ELF) method be used for seismic design of structural elements, the value of Constant Velocity Domain Transition Period, T_s , is estimated to be 0.605 seconds and the value of Long Period Transition Period, T_L , is provided in Table 1 for construction of Seismic Response Coefficient – Period (C_s -T) curve that is used in the ELF procedure.

As stated herein, the subject site is within a Site Class D-Default. A site-specific ground motion hazard analysis is not required for structures on Site Class D-Default with $S_1 \ge 0.2$ provided that the Seismic

Response Coefficient, C_s , is determined in accordance with ASCE 7-16, Article 12.8 and structural design is performed in accordance with Equivalent Lateral Force (ELF) procedure.

Allowable Soil Bearing Capacities

Pad Footings

An allowable soil bearing capacity of 1,500 pounds per square foot may be utilized for design of isolated 24-inch-square footings founded at a minimum depth of 12 inches below the lowest adjacent final grade for pad footings that are not a part of the slab system and are used for support of such features as roof overhang, second-story decks, patio covers, etc. This value may be increased by 20 percent for each additional foot of depth and by 10 percent for each additional foot of width, to a maximum value of 2,500 pounds per square foot. The recommended allowable bearing value includes both dead and live loads and may be increased by one-third for short duration wind and seismic forces.

Continuous Footings

An allowable soil bearing capacity of 1,500 pounds per square foot may be utilized for design of continuous footings founded at a minimum depth of 12 inches below the lowest adjacent final grade. This value may be increased by 20 percent for each additional foot of depth and by 10 percent for each additional foot of width, to a maximum value of 2,500 pounds per square foot. The recommended allowable bearing value includes both dead and live loads and may be increased by one-third for short duration wind and seismic forces.

Footing Settlement

Based on the allowable bearing values provided above, total static settlement of the footings under the anticipated loads is expected to be on the order of 3/4 inch. Differential settlement is expected to be less than 1/2 inch over a horizontal span of 30 feet. The majority of settlement is likely to take place as footing loads are applied or shortly thereafter.

Lateral Resistance

A passive earth pressure of 250 pounds per square foot per foot of depth, to a maximum value of 2,500 pounds per square foot, may be used to determine lateral bearing resistance for footings. In addition, a coefficient of friction of 0.30 times the dead load forces may be used between concrete and the supporting soils to determine lateral sliding resistance. The above values may be increased by one-third when designing for transient wind or seismic forces. It should be noted that the above values are based on the condition where footings are cast in direct contact with compacted fill or competent native soils. In cases where the

footing sides are formed, all backfill placed against the footings upon removal of forms should be compacted to at least 90 percent of the applicable maximum dry density.

Guidelines for Footings and Slabs on-Grade Design and Construction

The results of our laboratory tests performed on representative samples of near-surface soils within the site during our assessment indicate that these materials may be expansive. Swell tests, and EI tests indicated that they could predominantly exhibit expansion indices that range from 0 to 50 with a corresponding expansion potential of Very Low to Low. As such, the site soils are classified as "expansive" as defined in Section 1803.5.3 of the 2019 California Building Code (2019 CBC). The design of foundations and slabs on-ground should therefore be performed in accordance with the procedures outlined in Sections 1808.6.1 and 1808.6.2 of the 2019 CBC.

General

Briefly, Section 1808.6.1 of the 2019 CBC requires that foundations placed on or within the active zone of expansive soils shall be designed to resist differential volume changes and to prevent structural damage to the supported structure. Section 1808.6.2 of the 2019 CBC requires that non-prestressed slabs on-grade or mat foundations constructed on expansive soils be designed in accordance with the latest Code-adopted edition of *WRI/CRSI Design of Slab-on-Ground Foundations*. The 2019 CBC also requires that posttensioned slabs on-grade or mat foundations placed on expansive soils be designed in accordance with the latest Code-adopted edition of *PTI DC 10.5*, with the provision that the analyses used for determination of moments, shears and deflections are performed accordingly. It should be noted that, under certain conditions, the 2019 CBC allows for alternative, rational methods of analysis and design of such slabs provided that these methods account for soil-structure interaction, the deformed shape of the soil support, plate or stiffened plate action of the slab, as well as both center lift and edge lift conditions.

The design and construction guidelines that follow are based on the above soil conditions and may be considered for reducing the effects of variability in fabric, composition and, therefore, the detrimental behavior of the site soils such as excessive short- and long-term total and differential heave and settlement. These guidelines have been developed on the basis of the previous experience of this firm on projects with similar soil conditions. Although construction performed in accordance with these guidelines has been found to reduce post-construction movement and/or distress, they generally do not positively eliminate all potential effects of variability in soils characteristics and future settlement.

It should also be noted that the suggestions for dimension and reinforcement provided herein are performance-based and intended only as preliminary guidelines to achieve adequate performance under the anticipated soil conditions. However, they should not be construed as replacement for structural engineering analyses, experience and judgment. The project structural engineer, architect and/or civil engineer should make appropriate adjustments to slab and footing dimensions, and reinforcement type, size and spacing to account for internal concrete forces (e.g., thermal, shrinkage and expansion) as well as external forces (e.g., applied loads) as deemed necessary. Consideration should also be given to minimum design criteria as dictated by local building code requirements.

Conventional Slab-on-Grade System

As stated above, onsite soils should be considered expansive per Section 1803.5.3 of the 2019 CBC. For soils that are considered expansive, Section 1808.6.2 of the 2019 CBC specifies that non-prestressed slabon-grade foundations constructed on expansive materials should be designed in accordance with the latest Code-adopted edition of the Wire Reinforcement Institute (WRI) publication "Design of Slab-on-Ground Foundations". The design procedures outlined in the WRI publication are based on the weighted plasticity index of the various soil layers existing within the upper 15 feet of the building site.

Based on the recent laboratory testing by our firm, a weighted plasticity index of 14_can be assumed for the subject site. The WRI publication states that the weighted plasticity index of each building site should be modified (multiplied) by correction factors that compensate for the effects of sloping ground and the unconfined compressive strength of the supporting soil or bedrock materials. Since the building(s) will be constructed on level building pads, and in consideration of the estimated unconfined compressive strength of the weighted plasticity index, as provided herein, be multiplied by a factor of 1.2 in order to determine the value of the effective plasticity index (per Figure 9 of the WRI publication). In summary, it is recommended that an effective plasticity index of 17_be utilized by the project structural engineer to design slabs on-ground with an interior grade beam system in accordance with the WRI publication.

Footings

1. Exterior continuous footings supporting one- and two-story structures should be founded at a minimum depth of 18 inches below the lowest adjacent final grade. Interior continuous footings may be founded at a minimum depth of 15 inches below the top of the adjacent finish floor slabs.

- 2. In accordance with Table 1809.7 of 2019 CBC for light-frame construction, all continuous footings should have minimum widths of 12 inches for one- and two-story construction. We recommend all continuous footings should be reinforced with a minimum of four No. 4 bars, two top and two bottom.
- 3. A minimum 12-inch-wide grade beam founded at the same depth as adjacent footings should be provided across the garage entrances or similar openings (such as large doors or bay windows). The grade beam should be reinforced in a similar manner as provided above.
- 4. Interior isolated pad footings, if required, should be a minimum of 24 inches square and founded at a minimum depth of 12 inches below the bottoms of the adjacent floor slabs. Pad footings should be reinforced with No. 4 bars spaced a maximum of 18 inches on centers, both ways, placed near the bottoms of the footings.
- 5. Exterior isolated pad footings intended for support of roof overhangs such as second-story decks, patio covers and similar construction should be a minimum of 24 inches square, and founded at a minimum depth of 18 inches below the lowest adjacent final grade. The pad footings should be reinforced with No. 4 bars spaced a maximum of 18 inches on centers, both ways, placed near the bottoms of the footings. Exterior isolated pad footings may need to be connected to adjacent pad and/or continuous footings via tie beams at the discretion of the project structural engineer.
- 6. The spacing and layout of the interior concrete grade beam system required below floor slabs should be determined by the project architect or structural engineer in accordance with the WRI publication using the effective plasticity index value provided previously.
- 7. The minimum footing dimensions and reinforcement recommended herein may be modified (increased or decreased subject to the constraints of Chapter 18 of the 2019 CBC) by the structural engineer responsible for foundation design based on his/her calculations and engineering experience and judgment.

Building Floor Slabs

1. Concrete floor slabs should be a minimum 4 inches thick and reinforced with a minimum No. 3 bars spaced a maximum of 18 inches on centers, both ways. Alternatively, the structural engineer may recommend the use of prefabricated welded wire mesh for slab reinforcement. For this condition, the welded wire mesh should be of sheet type (not rolled) and should consist of 6x6/W2.9xW2.9 (per the Wire Reinforcement Institute, WRI, designation) or stronger. All slab reinforcement should be supported on concrete chairs or brick to ensure the desired placement near mid-depth. Care should be exercised to prevent warping of the welded wire mesh between the chairs in order to ensure its placement at the desired mid-slab position.

Slab dimension, reinforcement type, size and spacing need to account for internal concrete forces (e.g., thermal, shrinkage and expansion) as well as external forces (e.g., applied loads), as deemed necessary.

2. Living area concrete floor slabs and areas to receive moisture sensitive floor covering should be underlain with a moisture vapor retarder consisting of a minimum 10-mil-thick polyethylene or polyolefin membrane that meets the minimum requirements of ASTM E96 and ASTM E1745 for vapor retarders (such as Husky Yellow Guard®, Stego® Wrap, or equivalent). All laps within the membrane should be sealed, and at least 2 inches of clean sand should be placed over the membrane to promote uniform curing of the concrete. To reduce the potential for punctures, the membrane should be placed on a pad surface that has been graded smooth without any sharp protrusions. If a smooth surface cannot

be achieved by grading, consideration should be given to lowering the pad finished grade an additional inch and then placing a 1-inch-thick leveling course of sand across the pad surface prior to the placement of the membrane.

At the present time, some slab designers, geotechnical professionals and concrete experts view the sand layer below the slab (blotting sand) as a place for entrapment of excess moisture that could adversely impact moisture-sensitive floor coverings. As a preventive measure, the potential for moisture intrusion into the concrete slab could be reduced if the concrete is placed directly on the vapor retarder. However, if this sand layer is omitted, appropriate curing methods must be implemented to ensure that the concrete slab cures uniformly. A qualified materials engineer with experience in slab design and construction should provide recommendations for alternative methods of curing and supervise the construction process to ensure uniform slab curing. Additional steps would also need to be taken to prevent puncturing of the vapor retarder during concrete placement.

- 3. Garage floor slabs should be a minimum 4 inches thick and reinforced in a similar manner as living area floor slabs. Garage slabs should also be poured separately from adjacent wall footings with a positive separation maintained using ³/₄-inch-minimum felt expansion joint material. To control the propagation of shrinkage cracks, garage floor slabs should be quartered with weakened plane joints. Consideration should be given to placement of a moisture vapor retarder below the garage slab, similar to that provided in Item 2 above, should the garage slab be overlain with moisture sensitive floor covering.
- 4. Prior to placing concrete, the subgrade soils below living area floor slabs should be prewatered to achieve a moisture content that is at least 1.2 times the optimum moisture content. This moisture should penetrate to a depth of approximately 12 inches into the subgrade.
- 5. The minimum dimensions and reinforcement recommended herein for building floor slabs may be modified (increased or decreased) by the structural engineer responsible for foundation design based on his/her calculations and engineering experience and judgment.

Post-Tensioned Slabs on-Grade System (Optional)

As stated above, onsite soils should be considered to be expansive per Section 1803.5.3 of the 2019 CBC. Section 1808.6.2 of the 2019 CBC specifies that post-tensioned slab-on-ground foundations (floor slabs) resting on expansive materials should be designed in accordance with the latest Code-adopted edition of the Post-Tensioning Institute publication, PTI DC 10.5.

To comply with Section 1808.6.2 of the 2019 CBC and the PTI publication, in addition to performing appropriate tests on representative samples of site soils, certain assumptions regarding the site environmental/climatic condition and the composition of the subsurface soils were made. The following table, Table 2, presents soil and environmental/climatic parameters for design of post-tensioned slabs on-grade based on our laboratory testing, engineering analysis, as well as our engineering judgment and experience on similar sites.

TABLE 2

Presumptive Post-Tensioned Slab on-Grade Design Parameters for PTI Procedure

Tentative Design Parameters										
Approximate Depth of Constant Suction, feet	9									
Approximate Soil Suction, pF	3.9									
Inferred Thornthwaite Index:	-20									
Average Edge Moisture Variation Distance, e _m in feet:										
Center Lift	9.0									
Edge Lift	5.0									
Anticipated Swell, y _m in inches:										
Center Lift	0.35									
Edge Lift	0.65									

Modulus of Subgrade Reaction

The modulus of subgrade reaction for design of load bearing elements depends on the size of the element and soil-structure interaction. However, as a first level of approximation, this value may be assumed to be 100 pounds per cubic inch.

Minimum Design Recommendations

The soil values provided above may be utilized by the project structural engineer to design post-tensioned slabs on-ground in accordance with Section 1808.6.2 of the 2019 CBC and the PTI publication. Thicker floor slabs and larger footing sizes may be required for structural reasons and should govern the design if more restrictive than the minimum recommendations provided below:

- 1. Exterior continuous footings for one- and two-story structures should be founded at a minimum depth of 18 inches below the lowest adjacent finished ground surface. Interior footings may be founded at a minimum depth of 15 inches below the tops of the finish floor slabs.
- 2. In accordance with Table 1809.7 of 2019 CBC for light-frame construction, all continuous footings should have minimum width of 12 inches for one- and two-story construction. We recommend all continuous footings should be reinforced with a minimum of four No. 4 bars, two top and two bottom. Alternatively, post-tensioned tendons may be utilized in the perimeter continuous footings in lieu of the reinforcement bars.
- 3. A minimum 12-inch-wide grade beam founded at the same depth as adjacent footings should be provided across the garage entrances or similar openings (such as large doors or bay windows). The grade beam should be reinforced in a similar manner as provided above.
- 4. Interior isolated pad footings, if required, should be a minimum of 24 inches square and founded at a minimum depth of 12 inches below the bottoms of the adjacent floor slabs. Pad footings should be reinforced with No. 4 bars spaced a maximum of 18 inches on centers, both ways, placed near the bottoms of the footings.

- 5. Exterior isolated pad footings intended for support of roof overhangs such as second-story decks, patio covers and similar construction should be a minimum of 24 inches square, and founded at a minimum depth of 18 inches below the lowest adjacent final grade. The pad footings should be reinforced with No. 4 bars spaced a maximum of 18 inches on centers, both ways, placed near the bottoms of the footings. Exterior isolated pad footings may need to be connected to adjacent pad and/or continuous footings via tie beams at the discretion of the project structural engineer.
- 6. The thickness of the floor slabs should be determined by the project structural engineer with consideration given to the expansion potential of the on-site soils; however; we recommend that a minimum slab thickness of 4 inches be considered.
- 7. As an alternative to designing 4-inch-thick post-tensioned slabs with perimeter footings as described in Items 1 and 2 above, the structural engineer may design the foundation system using a thickened slab design. The minimum thickness of this uniformly thick slab should be 8 inches. The engineer in charge of post-tensioned slab design may also opt to use any combination of slab thickness and footing embedment depth as deemed appropriate based on their engineering experience and judgment.
- 8. Living area concrete floor slabs and areas to receive moisture sensitive floor covering should be underlain with a moisture vapor retarder consisting of a minimum 10-mil-thick polyethylene or polyolefin membrane that meets the minimum requirements of ASTM E96 and ASTM E1745 for vapor retarders (such as Husky Yellow Guard®, Stego® Wrap, or equivalent). All laps within the membrane should be sealed, and at least 2 inches of clean sand should be placed over the membrane to promote uniform curing of the concrete. To reduce the potential for punctures, the membrane should be placed on a pad surface that has been graded smooth without any sharp protrusions. If a smooth surface cannot be achieved by grading, consideration should be given to lowering the pad finished grade an additional inch and then placing a 1-inch-thick leveling course of sand across the pad surface prior to the placement of the membrane.

At the present time, some slab designers, geotechnical professionals and concrete experts view the sand layer below the slab (blotting sand) as a place for entrapment of excess moisture that could adversely impact moisture-sensitive floor coverings. As a preventive measure, the potential for moisture intrusion into the concrete slab could be reduced if the concrete is placed directly on the vapor retarder. However, if this sand layer is omitted, appropriate curing methods must be implemented to ensure that the concrete slab cures uniformly. A qualified materials engineer with experience in slab design and construction should provide recommendations for alternative methods of curing and supervise the construction process to ensure uniform slab curing. Additional steps would also need to be taken to prevent puncturing of the vapor retarder during concrete placement.

- 9. Garage floor slabs should be reinforced in a similar manner as living area floor slabs. Consideration should be given to placement of a moisture vapor retarder below the garage slab, similar to that provided in Item 6 above, should the garage slab be overlain with moisture sensitive floor covering.
- 10. Presaturation of the subgrade below floor slabs will not be required; however, prior to placing concrete, the subgrade below all dwelling and garage floor slab areas should be thoroughly moistened to achieve a moisture content that is at least equal to or slightly greater than optimum moisture content to a minimum depth of 12 inches below the bottoms of the slabs.

11. The minimum footing dimensions and foundation design parameters recommended herein are based on our experience, judgement and professional interpretation of the prevailing site soils' characteristics and the inferred site environmental/climatic conditions. At this time we do not have information regarding potential improvements located within the influence of the foundation system that could impact the foundation's performance. Such improvements may include, but are not limited to: adjacent lawn/planter areas and the implemented irrigation regime; trees located within 4 horizontal feet of the foundation; and vertical and/or horizontal moisture barriers. A knowledge of these feature may allow us to perform more refined analysis of the proposed development that may provide for a modification in the design parameters. In the absence of such refined analysis, the minimum dimensions provided herein may be modified (increased or decreased subject to the constraints of Chapter 18 of the 2019 CBC and PTI DC 10.5) by the structural engineer responsible for foundation design based on his/her calculations, engineering experience and judgment.

Footing Observations

Foundation footing trenches should be observed by the project geotechnical consultant to document into competent bearing-soils. The foundation excavations should be observed prior to the placement of forms, reinforcement or concrete. The excavations should be trimmed neat, level and square; prior to placing concrete, all loose, sloughed or softened soils and/or construction debris should be removed. Excavated soils derived from footing and utility trench excavations should not be placed in slab-on-grade areas unless the soils are compacted to a relative compaction of 90 percent or more.

General Corrosivity Screening

As a screening level study, limited chemical and electrical tests were performed on samples considered representative of the onsite soils to identify potential corrosive characteristics of these soils. The common indicators associated with soil corrosivity include water-soluble sulfate and chloride levels, pH (a measure of acidity), and minimum electrical resistivity. Test methodology and results are presented in Appendix B.

It should be noted that Petra does not practice corrosion engineering; therefore, the test results, opinion and engineering judgment provided herein should be considered as general guidelines only. Additional analyses would be warranted, especially, for cases where buried metallic building materials (such as copper and cast or ductile iron pipes) in contact with site soils are planned for the project. In many cases, the project geotechnical engineer may not be informed of these choices. Therefore, for conditions where such elements are considered, we recommend that other, relevant project design professionals (e.g., the architect, landscape architect, civil and/or structural engineer) also consider recommending a qualified corrosion engineer to conduct additional sampling and testing of near-surface soils during the final stages of site grading to provide a complete assessment of soil corrosivity. Recommendations to mitigate the detrimental effects of corrosive soils on buried metallic and other building materials that may be exposed to corrosive soils should be provided by the corrosion engineer as deemed appropriate.

In general, a soil's water-soluble sulfate levels and pH relate to the potential for concrete degradation; water-soluble chloride in soils impact ferrous metals embedded or encased in concrete, e.g., reinforcing steel; and electrical resistivity is a measure of a soil's corrosion potential to a variety of buried metals used in the building industry, such as copper tubing and cast or ductile iron pipes. Table 3, below, presents a single value of individual test results with an interpretation of current code indicators and guidelines that are commonly used in this industry. The table includes the code-related classifications of the soils as they relate to the various tests, as well as a general recommendation for possible mitigation measures in view of the potential adverse impact on various components of the proposed structures in direct contact with site soils. The guidelines provided herein should be evaluated and confirmed, or modified, in their entirety by the project structural engineer, corrosion engineer and/or the contractor responsible for concrete placement for structural concrete used in exterior and interior footings, interior slabs on-ground, garage slabs, wall foundations and concrete exposed to weather such as driveways, patios, porches, walkways, ramps, steps, curbs, etc.

Soil Corrosivity Screening Results Classification Test **Test Results General Recommendations** Soluble Sulfates 0.0078 % SO^1 No specific requirements (Cal 417) Slightly pН 7.53 Type I-P (MS) Modified or Type II Modified cement (Cal 643) Alkaline $C1^2$ Soluble Chloride Residence: No special recommendations 427 ppm (Cal 422) $C2^4$ Pools/Decking: water/cement ratio 0.40, f'c = 5,000 psiResistivity Protective wrapping/coating of buried pipes; corrosion Corrosive³ 3000 ohm-cm (Cal 643) resistant materials; or cathodic protection

TABLE 3

Notes:

1. ACI 318-14, Section 19.3

2. ACI 318-14. Section 19.3

3. Pierre R. Roberge, "Handbook of Corrosion Engineering"

Exposure classification C2 applies specifically to swimming pools and appurtenant concrete elements 4.

Post-Grading Recommendations

Laboratory Testing

Additional sampling and laboratory testing upon completion of rough grading operations is recommended to evaluate expansion and general corrosion potential for the purposes of providing final foundation design recommendations.

Site Drainage

Surface drainage systems consisting of sloping concrete flatwork, graded earth swales and/or an underground area drain system are anticipated to be constructed to collect and direct all surface waters to the adjacent streets and storm drain facilities. In addition, the ground surface around the proposed buildings should be sloped at a positive gradient away from the structures. The purpose of the precise grading is to prevent ponding of surface water within the level areas of the site and against building foundations and associated site improvements. The drainage systems should be properly maintained throughout the life of the proposed development.

Utility Trenches

Utility-trench backfill within street right-of-ways, utility easements, under sidewalks, driveways and building-floor slabs should be compacted to a relative compaction of 90 percent or more. Where onsite soils are utilized as backfill, mechanical compaction should be used. Density testing, along with probing, should be performed by the project geotechnical consultant or his representative to document adequate compaction. Utility-trench sidewalls deeper than about 4 feet should be laid back at a ratio of 1:1 (h:v) or flatter or shored. A trench box may be used in lieu of shoring. If shoring is anticipated, the project geotechnical consultant should be contacted to provide design parameters.

For trenches with vertical walls, backfill should be placed in approximately 1- to 2-foot thick loose lifts and then mechanically compacted with a hydra-hammer, pneumatic tampers or similar compaction equipment. For deep trenches with sloped walls, backfill materials should be placed in approximately 8- to 12-inch-thick loose lifts and then compacted by rolling with a sheepsfoot tamper or similar equipment.

Where utility trenches are proposed in a direction that parallels any building footing (interior and/or exterior trenches), the bottom of the trench should not be located within a 1:1 (h:v) plane projected downward from the outside bottom edge of the adjacent footing.

Plan Review and Construction Services

This report has been prepared for the exclusive use of the client to assist the project team in the design of the proposed development. It is recommended that Petra be engaged to review the final-design drawings and specifications prior to construction. This is to document that the recommendations contained in this report have been properly interpreted and are incorporated into the project grading plans and specifications. If Petra is not accorded the opportunity to review these documents, we can take no responsibility for misinterpretation of our recommendations.

We recommend that Petra be retained to provide soil-engineering services during grading and construction of the excavation and foundation preparation phases of the work. This is to observe compliance with the design, specifications, or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to start of construction.

If the project design concept changes significantly (e.g., structural loads or types), we should be retained to review our original design recommendations and their applicability to the revised construction concept. If conditions are encountered during construction that appears to be different than those indicated in this report, this office should be notified immediately. If this is the case, design and construction revisions may be required.

LIMITATIONS

This report is based on the project, as described, and the preliminary geologic/geotechnical field data obtained from the limited field tests performed at the locations shown. The materials encountered on the project site and utilized in our laboratory evaluation are believed representative of the total area, and the conclusions and recommendations contained in this report are presented on that basis. However, soil materials and groundwater levels can vary in characteristics between points of excavation, both laterally and vertically.

The conclusions and opinions contained in this report are based on the results of the described geotechnical evaluations and represent our professional judgment. The contents of this report are professional opinions and as such, are not to be considered a guaranty or warranty. The findings, conclusions and opinions contained in this report are to be considered tentative only and subject to confirmation by the undersigned during the construction process. Without this confirmation, this report is to be considered incomplete and Petra or the undersigned professionals assume no responsibility for its use. In addition, this report should be reviewed and updated after a period of 1 year or if the site ownership or project concept changes from that described herein.

The professional opinions contained herein have been derived in accordance with current standards of practice and no warranty is expressed or implied. This report has not been prepared for use by parties or projects other than those named or described herein. This report may not contain sufficient information for other parties or other purposes.

May 18, 2022 J.N. 21-374 Revision 2 Page 25

We sincerely appreciate this opportunity to be of service. Please do not hesitate to call the undersigned if you have any questions regarding this report.

Respectfully submitted,

PETRA GEOSCIENCES, INC.

Jonathan Cain Senior Associate Geologist

5/18/22

J. Montgomery Schultz Associate Engineer GE 2941

JC/JMS/lv

W:\2020-2025\2021\300\21-374\Reports\21-374 100 Geotechnical Due-Diligence Report - Revision 2.docx

REFERENCES

- American Concrete Institute, 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, Committee 318.
- American Society of Civil Engineers (ASCE/SEI), 2016, Minimum Design Load for Buildings and Other Structures, Standards 7-16.
- Bryant and Hart, E.W., W.A., 2007, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps; California Geological Survey, Special Publication 42, interim revision.

California Building Code (CBC), 2019, California Code of Regulations, Title 24, Part 2, Volume I and II.

- California Department of Conservation, 2020, Maps-Data website <u>https://maps.conservation.ca.gov/cgs/DataViewer/</u>
- California Department of Water Resources, 2021, Water Data Library, http://www.water.ca.gov/waterdatalibrary/groundwater/

_____, 2004, California Groundwater - Bulletin 118.

- California Geological Survey, 2010, 'Fault Activity Map of California, Geologic Data Map No. 6, <u>http://maps.conservation.ca.gov/cgs/fam/</u>.
- California Geological Survey, 2018, Earthquake Fault Zones, A Guide for Government Agencies, Property Owners/Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California, Special Publication 42.

Caltrans, 2003, Bridge Design Specifications, Section 8 – Reinforced Concrete, dated September.

California Geological Survey, 2002, *Probabilistic Seismic Hazard Assessment for the State of California*, Open-File Report 96-08, Revised 2002 California Seismic Shaking Analysis, Appendix A.

____, 2008, Special Publication 117A.

- _____, 2010, 2010 Fault Activity Map of California, Digital Version Geologic Data Map No. 6, <u>http://www.quake.ca.gov/gmaps/FAM/faultactivitymap.html</u>
 - _____, 2011, California Geological Survey Website: http://www.consrv.gov/CGS/rghm/Pshamap/pshamain.html
- Environmental Data Resources, Inc., 2013, The EDR Aerial Photo Decade Package, Tract 2 Pickering Project, Stanley Avenue, Escondido, CA 92026 (Inquiry No. 3741994.5), dated September 30.
- Federal Emergency Management Agency (FEMA), 2009, NEHERP (National Earthquake Hazards Reduction Program) Recommended Seismic Provision for New Building and Other Structures (FEMA P-750).

REFERENCES

Google Earth ®, 2021, by Google Earth, Inc., http://www.google.com/earth/index.html.

- Kennedy, M.P., 1999, Geologic Map of the Valley Center 7.5' Quadrangle, San Diego County, California, California Division of Mines and Geology (CDMG), Version 1.0, Scale 1:24,000.
- Kennedy, M.P., and Tan, S.S., 2005, Geologic Map of the Oceanside 30' x 60' Quadrangle, California, California Department of Conservation, Scale 1:100,000.
- Pasco Laret Suiter and Associates, 2022, City of Escondido Tract No. Tentative Subdivision Map (Sheet 2 of 3), Scale 1"= 30', plot dated May 09.
- Petersen, M.D., and Wesnouski, S.G., 1994, Fault Slip Rates and Earthquake Histories in Southern California: Bulletin of the Seismological Society of America, Vol. 84, No. 5, pp. 1608-1649, October, 1994.
- SEAOC & OSHPD Seismic Design Maps Web Application https://seismicmaps.org/
- Southern California Earthquake Center (SCEC, 1998), Seismic Hazards in Southern California: Probable Earthquakes, 1994 to 2024: by Working Group on California Earthquake Probabilities.
- (SCEC, 1999), Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction Hazards in California: organized through the Southern California Earthquake Center, University of Southern California.
- United States Geological Survey (USGS), 2014, Unified Hazard Tool, https://earthquake.usgs.gov/hazards/interactive/

FIGURES

APPENDIX A

Project	:	N. Ash Street Project		В	oring	No.:	B-1		
Locatio	on:	Escondido, California			E	levati	on:	737	
Job No	.:	21-374	Client:		D	ate:	A	August 31,	2021
Drill M	lethod:	Truck Mount CME-75 Hollowstem	Driving Weight: 140lbs		L	ogged	By:	BR	
				W	Sam	ples	Lab	oratory Tes	ts
Depth (Feet)	Lith- ology	Material	Description	A T E R	Blows per 6 in.	CB ou rI ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
		Topsoil Silty Sand (SM): Red brown, dry, loose, fine to mediu Older Alluvium (Qoal) Silty Sand (SI Red brown, damp, very dense, fine coarse sand grains, pinhole porosity Clayey and Silty Sand (SM/SC): Lig dense, clayey and silty fine-grained. <u>Monzogranite of Merriam Mountain</u> Gray brown, damp, hard, medium-g and poorly graded fine to medium g Yellow brown to gray brown, damp, moderately weathered, excavates a sand. Total depth 12.0-feet. No groundwater or seepage. Backfilled with cuttings.	Im-grained, porous. M). to medium-grained, with scattered angular $\lambda_{,} <5\%$ fine angular gravel. ht gray brown to red brown, moist, very (<u>Kmm):</u> rained intrusive igneous rock, excavates rained sand, moderately weathered. coarse-grained intrusive igneous bedrock, s poorly graded medium to coarse-grained		16 50 24 36 50 25 50 50 50		(70)	(pci) 128.8 113.7	MAX EXP CHEM

Project:	N. Ash Street Project			Bo	ring	No.:	B-2	
Location:	Escondido, California			Ele	evati	on:	737	
Job No.:	21-374	Client:		Da	te:	A	August 31,	2021
Drill Method:	Truck Mount CME-75 Hollowstem	Driving Weight: 140lbs		Lo	gged	By:	BR	
		,	w	Samp	les	Lab	oratory Tes	ts
Depth Lith- (Feet) ology	Material	Description	A T E R	Blows per 6 in.	CB ou rI ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Topsoil Clayey Sand (SC): Red brown, dry, loose, fine to mediu grains. Older Alluvium (Qoal) Clayey Sand Red brown, damp to moist, very der coarse sand grains. Monzogranite of Merriam Mountain Red brown to olive gray, damp, hard bedrock, weathered, excavates as p sand. Gray brown and yellow brown, damp rock, moderately weathered, excava grained sand. Total depth 7.75-feet. No groundwater or seepage. Backfilled with cuttings.	Im-grained, with scattered coarse sand (SC). Isse, fine to medium grained, with scattered (Kmm): d, medium-grained intrusive igneous toorly graded fine to medium grained b, hard, medium-grained intrusive igneous tes as poorly graded medium to coarse		7 19 46 14 50 14 50		10.3	122.3	

Project		N. Ash Street Project	B	Boring No.:							
Locatio	on:	Escondido, California			E	leva	tic	on:	731		
Job No	o.:	21-374	Client:		D	ate:		A	ugust31, 2	2021	
Drill M	lethod:	Truck Mount CME-75 Hollowstem	Driving Weight: 140lbs		L	ogge	ed	By:	BR		
			-	W	Sam	ples		Lab	Laboratory Tests		
Depth (Feet)	Lith- ology	Materia	Blows per 6 in.	C o r e	B u I k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests			
0		Topsoil Clayey Sand (SC): Red brow	wn, moist, loose, fine to coarse-grained.								
		Older Alluvium (Qoal) Clayey Sand sand.	(<u>SC):</u> Red brown, moist, dense, clayey								
_	-	Silty Sand (SM): Red brown, damp t grained.	Silty Sand (SM): Red brown, damp to moist, very dense, fine to coarse- grained.								
_		Clayey Sand to Sandy Clay (SC/CL Gray brown to red brown, moist, ver sand, to sandy clay.	8 17 49			16.9	114.1				
10 — —		<u>Clayey Sand (SC):</u> Red brown to yellow brown to gray b grained, with angular cobbler in tip c	24 50								
_		Monzogranite of Merriam Mountain Gray, damp, very dense, medium-gr sample recovery, moderately weath	(<u>Kmm):</u> rained intrusive igneous bedrock, no ered bedrock.		50						
15 —		No groundwater or seepage.									
_		Dacking with cullings.									
_	-										
_											
20-											
_											
_											
25 —											
_											
_											
_											
30 —											
-						\mid					
-											
35 —											

Project:	N. Ash Street Project				Во	ring	No.:	B-4		
Location:	Escondido, California				Ele	evati	on:	731		
Job No.:	21-374	Client:			Da	te:	A	August 31,	2021	
Drill Method:	Truck Mounted CME-75 Hollowstem	Driving Weight: 140lbs			Lo	gged	l By:	BR		
			W	S	amp	les	Lab	oratory Tes	sts	
Depth Lith- (Feet) ology	Materia	Description	A T E R	Blc p 6	ows er in.	CB ou rI ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests	
0	Topsoil Sandy Clay (CL):	v porous with rootlets								
	Older Alluvium (Qoal) Sandy Clay (Dark Brown, moist, firm, sandy clay,	, porous.		2	7 3 3		11.4	115.8	CONSOL	
	Clayey Sand (SC): Dark red brown,	1 2	5 0 :0		13.5	118.3				
	Clayey Sand (SC): Red brown, mois		1 1 2	2 7 1		11.3	124.9			
	Monzogranite of Merriam Mountain Gray to red brown, moist, hard, mec weathered, excavates as poorly gra sand. Gray, moist, hard, medium grained i excavated as fine to medium graine Total depth 12.3-feet. No groundwater or seepage. Backfilled with cuttings.	(Kmm): lium grained intrusive igneous rock, ded medium to fine to medium grained intrusive igneous beodrok, weathered, d sand.		555						

Project	:	N. Ash Street Project			В	oriı	ng l	No.:	B-5	
Locatio	on:	Escondido, California			El	eva	atic	on:	730	
Job No	.:	21-374	Client:		Da	ate		A	ugust 31,	2021
Drill M	lethod:	Truck Mount CME-75 Hollowstem	Driving Weight: 140lbs		Lo	ogg	ed	By:	BR	
			-	Ŵ	Samp	oles	3	Lab	oratory Tes	ts
Depth (Feet)	Lith- ology	Materia	Description	A T E R	Blows per 6 in.	C o r e	B U I k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
		Topsoil Silty Sand (SM): Red brown grained, with scattered coarse sand Older Alluvium (Qoal) Silty Sand (SI Red brown, damp, dense, fine to me grains. Clayey Sand (SC): Red brown, dam grained, with scattered coarse sand Red brown to gray brown, moist, me scattered coarse sand grains, <5% f Red brown to gray brown, moist, de cobble in tip of sampler. Red brown to gray brown, moist, de cobble in tip of sampler. Red brown to gray brown, moist, ver <u>Monzogranite of Merriam Mountain</u> Gray brown to gray, damp, hard, me moderately weathered. Total depth 15.9-feet. No groundwater or seepage. Backfilled with cuttings.	, dry to damp, soft, fine to medium- grains, porous. <u>M</u>). edium-grained, with scattered coarse sand p, medium dense, fien to medium- grains. edium dense, fine to medium grained, iwith fine angular gravel. nse, fine to medium-grained, with angular ry dense, fine to medium-grained. (<u>Kmm):</u> edium-grained intrusive igneous rock,	R	6 in. 12 19 23 9 12 19 9 14 15 12 16 29 21 22 50 28 40			(%) 6.1 10.0 14.6	(pcf) 123.4 118.1 121.5	Tests
 35 —										

Project	:	N. Ash Street Project				Bor	ing	No.:	B-6	
Locatio	on:	Escondido, California				Elev	atio	on:	726	
Job No	.:	21-374	Client:			Date	e:	A	ugust 31,	2021
Drill M	lethod:	Truck Mount CME-75 Hollowstem	Log	ged	By:	BR				
				W	Sa	mple	es	Lab	oratory Tes	ts
Depth (Feet)	Lith- ology	Material	Description	A T E R	Blow per 6 in	vs C r c n. e) B U k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
0		Topsoil Silty Sand (SM): Red brown	, dry, loose, fine-grained, with scattered ar gravel.					-		
		Older Alluvium (Qoal) Silty Sand (SI Red brown, moist, medium dense, fi	M <u>).</u> ine-grained sand.		17 7			3.5	106.7	
5—		Sandy Clay (CL): Red brown, moist,	, stiff, sandy clay.					15.4	119.8	
-		Brown to red brown, moist, stiff, san	dy clay, with fine to coarse angular gravel.		4 8 12			-		
10 —		Monzogranite of Merriam Mountain Gray, damp, hard, medium-grained	(Kmm): intrusive igneous bedrock.		38 50					
		No groundwater or caving. Backfilled with cuttings.								
45								-		
- 15								-		
_								-		
20 —								-		
								-		
_								-		
								-		
								-		
_								-		
_								-		
30 —							+	-		
								-		
-										
								-		

Project	:	N. Ash Street Project]	Boring No.: P-1						
Locatio	on:	Escondido, California]	Elev	atio	on:	726		
Job No	.:	21-374	Client:]	Date	:	A	ugust 31,	2021	
Drill M	lethod:	Truck Mounted CME-75	Driving Weight: 140lbs]	Log	ged	Ву:	BR		
			ws								
Depth (Feet)	Lith- ology	Material	Description	A T E R	Blow per 6 in.	rs C o r e	B u I k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests	
		Topsoil Sandy Clay to Clayey Sand (to damp, loose, sandy clay to clayey Older Alluvium (Qoal) Sandy Clay to Red brown, moist, dense, sandy cla Monzogranite of Merriam Mountain Gray, damp to moist, hard, medium (excavates as poorly graded medium Total depth 10.0-feet. No groundwater or seepage. Backfilled with cuttings.	(<u>SC/CL):</u> Red brown to grayish brown, dry / sand. <u>O Clayey Sand (SC/CL).</u> y to clayey sand. (<u>Kmm):</u> •grained intrusive igneous rock, friable. • to coarse sand with gravel.		20 50						

APPENDIX B

LABORATORY TEST PROCEDURES

LABORATORY DATA SUMMARY

LABORATORY TESTING

Associated with the subsurface exploration was the collection of bulk and relatively undisturbed samples of soil materials for laboratory testing. The relatively undisturbed samples were obtained using a 3-inch, outside-diameter, modified California split-spoon soil sampler lined with 1-inch-high brass rings. The driven ring samples were placed in sealed containers and transported to our laboratory located at 1251 W. Pomona Road, Unit #103, Corona, CA 92882, for testing.

Our laboratory testing capabilities include Soil Classifications, Moisture Content and In-Situ Moisture Content and Dry Unit Weight, Organic Content, Laboratory Maximum Dry Unit Weight and Optimum Moisture Content, Expansion Index, Corrosivity Screening (Soluble Sulfate and Chloride Content, pH, Resistivity), Atterberg Limits, Grain Size Distribution, Direct Shear, Consolidation and Permeability; all in accordance with the latest procedures of American Society for Testing and Materials (ASTM) and California Department of Transportation (Caltrans).

To evaluate the engineering properties of site soils, laboratory testing was performed on selected samples of soil considered representative of those encountered. Appropriate tests were assigned by the project engineer and geologist based on project plans and specifications including the level of anticipated loads, when available, and subsurface stratigraphy. Test results were reviewed by the laboratory manager and engineer-in-charge of the laboratory or his qualified designee for completeness and accuracy. A description of laboratory test procedures and summaries of the test data are presented in the following pages.

LABORATORY TEST PROCEDURES

Soil Classification

Soils encountered within the exploratory borings were initially classified in the field in general accordance with the visual-manual procedures of the Unified Soil Classification System (ASTM D 2488). The samples were re-examined in the laboratory and the classifications reviewed and then revised where appropriate. The assigned group symbols are presented in the Test Pit Logs (Appendix A).

In-Situ Moisture and Density

Moisture content and unit dry density of in-place soils were determined in representative strata. Test data are summarized in the Boring Logs (Appendix A).

Expansion Index

Expansion Index (E.I.) testing was performed on a selected bulk samples of the onsite soils in general accordance with ASTM D 4829. The test results and expansion potentials are presented in Appendix B.

Soil Corrosivity

Chemical analyses were performed on a selected sample to determine concentrations of soluble sulfate and chloride, as well as pH and resistivity. These tests were performed in accordance with California Test Method Nos. 417 (sulfate), 422 (chloride) and 643 (pH and resistivity). Test results are presented in Appendix B.

Consolidation

Volume change (settlement or heave) characteristics of select undisturbed soils were determined by onedimensional consolidation tests. These tests were performed in general accordance with the current version of the Test Method ASTM D 2435. Additionally heave or hydro-consolidation tests were performed in general accordance with the current version of Test Method ASTM D 4546, or ASTM D 5333 respectively. Axial loads were applied in several increments to laterally restrained 1-inch-high samples. The resulting deformations were recorded at selected time intervals. The test samples were inundated at the approximate in-situ and/or anticipated design overburden pressure in order to evaluate the effect of an increase in moisture content, e.g., hydro-consolidation potential or heave. Results of these tests are graphically presented on Plates B-2.

	LABORATORY DATA SUMMARY													
Boring Number	Sample	nple pth t) Description	Compaction ¹		Expansion ²		Atterberg Limits ³		g	Soluble	Chloride		Minimum	
	Depth (ft)		Max. Dry Density (pcf)	Optimum Moisture (%)	Index	Potential	LL	PL	PI	Content ⁴ (%)	Content ⁵ (ppm)	pH ⁶	Resistivity ⁶ (Ohm-cm)	
B-1	0-5	Silty Sand w/clay	130.6	9.0	10	Very Low	-	-	-	0.0078	427	7.53	3000	

Test Procedures: ¹ Per ASTM Test Method ASTM D 1557 ² Per ASTM Test Method ASTM D 4829 ³ Per ASTM Test Method ASTM D 4318 ⁴ Per California Test Method CTM 417
 ⁵ Per California Test Method CTM 422

⁶ Per California Test Method CTM 643

APPENDIX C

SEISMIC DESIGN DATA

OSHPD

North Ash Street, Escondido

Latitude, Longitude: 33.1570, -117.0858

St	anley Ave Stanley Ave	Aspero Ct Bridle PI PI PI PI PI PI PI PI PI PI		
Date		9/23/2021, 11:34:41 AM		
Design C	Code Reference Document	ASCE7-16		
Risk Cat	egory			
Site Clas	is	D - Default (See Section 11.4.3)		
Туре	Value	Description		
SS	0.932	MCE _R ground motion, (for 0.2 second period)		
S ₁	0.339	MCE _R ground motion. (for 1.0s period)		
S _{MS}	1.118	Site-modified spectral acceleration value		
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value		
S _{DS}	0.746	Numeric seismic design value at 0.2 second SA		
S _{D1} null -See Section 11.4.8		Numeric seismic design value at 1.0 second SA		
Туре	Value	Description		
SDC	null -See Section 11.4.8	Selsmic design category		
Fa	1.2	Site amplification factor at 0.2 second		
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second		
PGA	0.404	MCE _G peak ground acceleration		
FPGA	1.2	Site amplification factor at PGA		
PGA _M	0.484	Site modified peak ground acceleration		
т _L	8	Long-period transition period in seconds		
SsRT	0.932	Probabilistic risk-targeted ground motion. (0.2 second)		
SsUH	1.013	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration		
SsD	1.5	Factored deterministic acceleration value. (0.2 second)		
S1RT	0.339	Probabilistic risk-targeted ground motion. (1.0 second)		
S1UH	0.368 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.			
S1D	D 0.6 Factored deterministic acceleration value. (1.0 second)			
PGAd	Ad 0.5 Factored deterministic acceleration value. (Peak Ground Acceleration)			
CRS	0.32	mapped value of the risk coefficient at short penods		
CR1	0.922	mapped value of the risk coefficient at a period of 1 s		

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> <u>(OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the selsmic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

APPENDIX D

PERCOLATION TEST DATA

FORM I-5

Test Number: P-1

Deep Percolation Test Method

∢ D≯

d

 \mathbf{D}_{w}

 \mathbf{D}_{t}

Total Depth of Boring, Dt (ft): 10 Diameter of Hole, D (in): 8 Diameter of Pipe, d (in): 3 Agg. Correction (% Voids): 42 Pre-soak depth (ft): 1.5

Time Interval (min)	Depth to Wa D _w 1st Reading	ater Surface (ft) 2nd Reading	Change in Head (in)	Perc. Rate (min/in)	Perc. Rate (gal/day/ft^2)
30	4.80	4.85	0.60	50.00	0.28
30	4.59	4.62	0.36	83.33	0.16
30	4.45	4.46	0.12	250.00	0.05

Percolation Rate: 250.00 Minutes/Inch 0.05 gal/day/ft²

Infiltration Rate: 0.01 Inches/Hour* (Porchet Method)

	Categorization of Infiltration Feasibility Condition	Form I-5			
Part 1 - Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?					
Criteria	Screening Question	Yes	No		
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.				
 Provide basis: A falling head percolation test was preformed at tentative basin location with a result of 0.01 in/hr. Applying a FS=2.0 for screening (Section D.5.4) the reliable infiltration rate is 0.005 in/hr. *Petra report: J.N. 21-374, dated 9/23/2021 Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability. 					
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.				
Provide b Summariz discussior	asis: N/A - infiltration rate < 0.5 in/hr. we findings of studies; provide reference to studies, calculations, maps, c n of study/data source applicability.	data sources, etc	. Provide narrative		

Criteria	Screening Question	Yes	No		
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.				
Provide b	asis: N/A - infiltration rate < 0.5 in/hr.				
Summariz	ze findings of studies; provide reference to studies, calculations, maps, da n of study/data source applicability.	ata sources, etc.	Provide narrative		
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.				
Provide b Summariz	asis: N/A - infiltration rate < 0.5 in/hr. we findings of studies; provide reference to studies, calculations, maps, de	ata sources, etc.	Provide narrative		
Part 1 Result*	If all answers to rows 1 - 4 are " Yes " a full infiltration design is poten The feasibility screening category is Full Infiltration If any answer from row 1-4 is " No ", infiltration may be possible to so	tially feasible.			
	Proceed to Part 2	ni design.			

Part 2 – Partial Infiltration vs. No Infiltration Feasibility Screening Criteria

Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated?

Criteria	Screening Question	Yes	No		
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.				
Provide basis: Basins constructed in older alluvium or weathered granitic bedrock will provide infiltration at an appreciable rate (>0.01 in/hr). Basins in compacted fill will not provide infiltration at an appreciable rate. Refer to Petra J.N. 21-374, dated 9/23/2021					
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.					
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.				
Provide basis: In view of the relatively low infiltration rate determined in the limited feasibility testing to date, infiltration is not anticipated to increase the risks of geotechnical hazards noted in C.2. As development plans are refined, such geotechnical risks shall be further evaluated as a part of the design process. Slope stability, in partcular, shall be evaluated where a basin is to be located in close proximity to either the toe or top of a graded slope or a natural slope steeper than 3:1 (h:v).					
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.					

Criteria	Screening Question	Yes	No			
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.					
Provide b	asis: Groundwater was not encountered within the percolation test boring, drilled to a c	depth of 10 feet. In view	w of the relative			
	low infiltration test rate, significant risks to groundwater are not anticipated.					
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.						
8	Can infiltration be allowed without violating downstream water rights ? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.					
Provide b	asis: There are no know water rights immediately downstream. Natural runoff is expec	ted to be smaller than	post development			
	runoff, even with infiltration considered.					
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.						
Part 2	If all answers from row 5-8 are yes then partial infiltration design is po The feasibility screening category is Partial Infiltration .	tentially feasible.				
Result*	If any answer from row 5-8 is no, then infiltration of any volume is considered to be infeasible within the drainage area. The feasibility screening category is No Infiltration .					