# City of Escondido PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

TENTATIVE SUBDIVISION MAP NO. 20-0006 Permit Application ID: \_\_\_\_\_

2200 S. Escondido Blvd, Escondido, CA 2208 S. Escondido Blvd, Escondido, CA 2210 S. Escondido Blvd, Escondido, CA 2222 S. Escondido Blvd, Escondido, CA 2224 S. Escondido Blvd, Escondido, CA

ASSESSOR'S PARCEL NUMBER(S): 236-390-02-00 / 236-390-03-00 / 236-390-52-00 / 236-390-53-00 / 236-390-54-00

**ENGINEER OF WORK:** 



Eric Lissner, P.E., C84264

PREPARED FOR:

Warmington Residential 3090 Pullman Street Costa Mesa, CA 92626 714-557-5511

#### PDP SWQMP PREPARED BY:



DATE OF SWQMP: February 2021

PLANS PREPARED BY: X Engineering & Consulting Eric Lissner, P.E. 6 Hutton Centre Dr., Suite 650, Santa Ana, CA 92707 949-522-7100 SWQMP APPROVED BY: [FOR CITY STAFF ONLY]

APPROVAL DATE:



This page was left intentionally blank.

### **TABLE OF CONTENTS**

| TABLE OF C   | ONTENTS                                                                          | iii   |
|--------------|----------------------------------------------------------------------------------|-------|
| ATTACHMEN    | TS                                                                               | iv    |
| ACRONYMS     |                                                                                  | iv    |
| PDP SWQMP    | PREPARER'S CERTIFICATION PAGE                                                    | v     |
| SUBMITTAL I  | RECORD                                                                           | . vii |
| PROJECT VI   | CINITY MAP                                                                       | viii  |
| Step 1: Pro  | pject type determination (Standard or Priority Development Project) (Form I-2a). | . 1   |
| Step 1.1:    | Storm Water Quality Management Plan requirements                                 | . 4   |
| Step 1.2:    | Exception to PDP definitions                                                     | . 4   |
| Step 2: Co   | nstruction Storm Water BMPs                                                      | . 5   |
| Step 3: Cit  | y of Escondido PDP SWQMP Site Information Checklist (Form I-2a)                  | . 6   |
| Step 3.1:    | Description of Existing Site Condition                                           | . 6   |
| Step 3.2:    | Description of Existing Site Drainage Patterns                                   | . 7   |
| Step 3.3:    | Description of Proposed Site Development                                         | . 8   |
| Step 3.4:    | Description of Proposed Site Drainage Patterns                                   | . 9   |
| Step 3.5:    | Potential Pollutant Source Areas                                                 | 10    |
| Step 3.6:    | Identification and Narrative of Receiving Water and Pollutants of Concern        | 11    |
| Step 3.7:    | Hydromodification Management Requirements                                        | 12    |
| Step 3.7.2   | 1: Critical Coarse Sediment Yield Areas*                                         | 13    |
| Step 3.7.2   | 2: Flow Control for Post-Project Runoff*                                         | 14    |
| Step 3.8:    | Other Site Requirements and Constraints                                          | 15    |
| Step 4: So   | urce Control BMP Checklist (Form I-2b)                                           | 16    |
| Step 5: Site | e Design BMP Checklist (Form I-2c)                                               | 18    |
| Step 6: PD   | P Structural BMPs (Form I-3)                                                     | 20    |
| Step 6.1:    | Description of structural BMP strategy                                           | 20    |
| Step 6.2:    | Structural BMP Checklist                                                         | 22    |
| Step 6.3:    | Offsite Alternative Compliance Participation Form                                | 23    |

### ATTACHMENTS

Attachment 1: Backup for PDP Pollutant Control BMPs Attachment 1a: Storm Water Pollutant Control Worksheet Calculations (Worksheet B.2-1 DCV, Form I-4) Attachment 1b: Form I-5, Categorization of Infiltration Feasibility Condition Attachment 1c: Form I-6, Factor of Safety and Design Infiltration Rate Worksheet Attachment 1d: Drainage Management Area (DMA) Exhibit Attachment 1e: Individual Structural BMP DMA Mapbook Attachment 2: Backup for PDP Hydromodification Control Measures Attachment 2a: Flow Control Facility Design Attachment 2b: Hydromodification Management Exhibit Attachment 2c: Management of Critical Coarse Sediment Yield Areas Attachment 2d: Geomorphic Assessment of Receiving Channels (optional) Attachment 2e: Vector Control Plan (if applicable) Attachment 3: Structural BMP Maintenance Plan Attachment 3a: Structural BMP Maintenance Thresholds and Actions Attachment 3b: Draft Maintenance Agreements / Notifications (when applicable) Attachment 4: City of Escondido PDP Structural BMP Verification Attachment 5: Copy of Plan Sheets Showing Permanent Storm Water BMPs

### ACRONYMS

| ACP     | Alternative Compliance Project                 |
|---------|------------------------------------------------|
| APN     | Assessor's Parcel Number                       |
| BMP     | Best Management Practice                       |
| DMA     | Drainage Management Area                       |
| EOW     | Engineer of Work                               |
| HMP     | Hydromodification Management Plan              |
| HSG     | Hydrologic Soil Group                          |
| MS4     | Municipal Separate Storm Sewer System          |
| N/A     | Not Applicable                                 |
| PDP     | Priority Development Project                   |
| PE      | Professional Engineer                          |
| SC      | Source Control                                 |
| SD      | Site Design                                    |
| SDRWQCB | San Diego Regional Water Quality Control Board |
| SIC     | Standard Industrial Classification             |
| SWDM    | Storm Water Design Manual                      |
| SWQMP   | Storm Water Quality Management Plan            |
| WMAA    | Watershed Management Area Analysis             |
| WQIP    | Water Quality Improvement Plan                 |

### PDP SWQMP PREPARER'S CERTIFICATION PAGE

**Project Name: Escondido 3.4** Permit Application Number:

#### PREPARER'S CERTIFICATION

I hereby declare that I am the Engineer in Responsible Charge of design of storm water best management practices (BMPs) for this project, and that I have exercised responsible charge over the design of the BMPs as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the PDP requirements of the City of Escondido Storm Water Design Manual, which is a design manual for compliance with the City of Escondido Municipal Code (Chapter 22, Article 2) and regional MS4 Permit (California Regional Water Quality Control Board San Diego Region Order No. R9-2013-0001 as amended by R9-2015-0001 and R9-2015-0100) requirements for storm water management.

I have read and understand that the City of Escondido has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the Storm Water Design Manual. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by City staff is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

Engineer of Work's Signature, PE Number & Expiration Date

Eric Lissner, P.E.

Print Name

X Engineering & Consulting, Inc.

Company

02-16-2021

Date

Engineer's Seal:

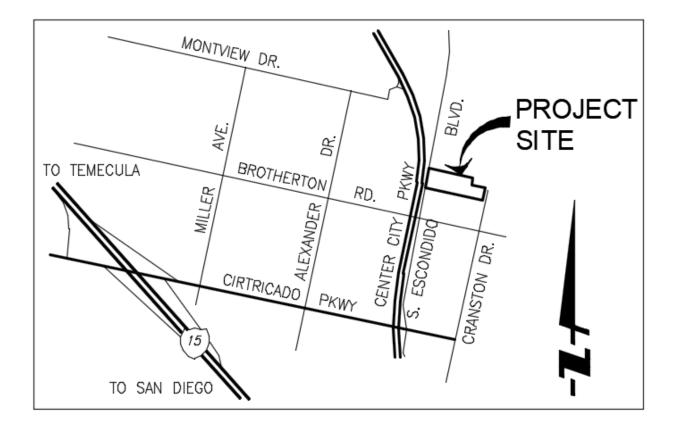
### SUBMITTAL RECORD

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is re-submitted, provide the date and status of the project. In column 4 summarize the changes that have been made or indicate if response to plan check comments is included. When applicable, insert response to plan check comments behind this page.

| Submittal | Date           | Summary of Changes              |  |  |
|-----------|----------------|---------------------------------|--|--|
| Number    |                |                                 |  |  |
| 1         | April, 2020    | Initial Submittal               |  |  |
| 2         | October, 2020  | Response to plan check comments |  |  |
| 3         | December, 2020 | Response to plan check comments |  |  |
| 4         | January, 2021  | Response to plan check comments |  |  |
| 5         | February, 2021 | Response to plan check comments |  |  |

Preliminary Design / Planning / CEQA

#### **Final Design**


| Submittal<br>Number | Date | Summary of Changes |
|---------------------|------|--------------------|
| 1                   |      | Initial Submittal  |
| 2                   |      |                    |
| 3                   |      |                    |
| 4                   |      |                    |

Plan Changes

| Submittal<br>Number | Date | Summary of Changes |
|---------------------|------|--------------------|
| 1                   |      | Initial Submittal  |
| 2                   |      |                    |
| 3                   |      |                    |
| 4                   |      |                    |

### **PROJECT VICINITY MAP**

Project Name: Escondido 3.4 Record ID: TBD





N.T.S.

### Step 1: Project type determination (Standard or Priority Development Project) (Form I-2a)

| Project Summary Information                                                                                                              |                                               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| Project Name                                                                                                                             | Escondido 3.4                                 |  |  |  |  |
| Project Address                                                                                                                          | 2200 S. Escondido Blvd, Escondido, CA         |  |  |  |  |
|                                                                                                                                          | 2208 S. Escondido Blvd, Escondido, CA         |  |  |  |  |
|                                                                                                                                          | 2210 S. Escondido Blvd, Escondido, CA         |  |  |  |  |
|                                                                                                                                          | 2222 S. Escondido Blvd, Escondido, CA         |  |  |  |  |
|                                                                                                                                          | 2224 S. Escondido Blvd, Escondido, CA         |  |  |  |  |
| Assessor's Parcel Number(s)                                                                                                              | 236-390-02-00 / 236-390-03-00 / 236-390-52-00 |  |  |  |  |
|                                                                                                                                          | 236-390-53-00 / 236-390-54-00                 |  |  |  |  |
| Permit Application Number                                                                                                                | TBD                                           |  |  |  |  |
| Project Watershed (Hydrologic Unit)                                                                                                      | Select One:<br>San Dieguito 905               |  |  |  |  |
| Parcel Area                                                                                                                              |                                               |  |  |  |  |
| (total area of Assessor's Parcel(s) associated with the project)                                                                         | 3.47 Acres (150,936 Square Feet)              |  |  |  |  |
| Area to be disturbed by the project<br>Brainet Area (144,619 Square Feet)                                                                |                                               |  |  |  |  |
| (Project Area)                                                                                                                           |                                               |  |  |  |  |
| Project Proposed Impervious Area                                                                                                         | 2.43 Acres (105,851 Square Feet)              |  |  |  |  |
| (subset of Project Area)<br>Project Proposed Pervious Area                                                                               |                                               |  |  |  |  |
| (subset of Project Area) 0.89 Acres (38,768 Square Feet)                                                                                 |                                               |  |  |  |  |
| Note: Proposed Impervious Area + Proposed Pervious Area = Area to be Disturbed by the Project.<br>This may be less than the Parcel Area. |                                               |  |  |  |  |
| Confirmation of Priority Development Project Determination                                                                               |                                               |  |  |  |  |
| The project is (select one): $\square$ New Development $\square$ Redevelopment <sup>1</sup>                                              |                                               |  |  |  |  |
| The total proposed newly created or replaced impervious area is: 100,682 ft <sup>2</sup>                                                 |                                               |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Redevelopment is defined as: The creation and/or replacement of impervious surface on an already developed site. Examples include the expansion of a building footprint, road widening, the addition to or replacement of a structure, and creation or addition of impervious surfaces. Replacement of impervious surfaces includes any activity that is not part of a routine maintenance activity where impervious material(s) are removed, exposing underlying soil during construction. Redevelopment does not include routine maintenance activities, such as trenching and resurfacing associated with utility work; pavement grinding; resurfacing existing roadways; new sidewalks construction; pedestrian ramps; or bike lanes on existing roads; and routine replacement of damaged pavement, such as pothole repair.

Solar energy farms that are not also one of the categories listed in Step 2b of Table 1-1. City staff must also determine that appropriate BMPs are provided to mitigate for downstream impacts due to significant changes to the existing hydrology

| Is the   | projec  | t in ar | ny of the following categories, (a) through (f)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yes<br>⊠ | No<br>□ | (a)     | New development projects that create 10,000 square feet or more of impervious surfaces (collectively over the entire project site). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Yes      | No<br>⊠ | (b)     | Redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface (collectively over the entire project site on an existing site of 10,000 square feet or more of impervious surfaces). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Yes      | No      | (c)     | <ul> <li>New and redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface (collectively over the entire project site), and support one or more of the following uses: <ul> <li>(i) Restaurants. This category is defined as a facility that sells prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands selling prepared foods and drinks for immediate consumption (Standard Industrial Classification (SIC) code 5812).</li> <li>(ii) Hillside development projects. This category includes development on any natural slope that is twenty-five percent or greater.</li> <li>(iii) Parking lots. This category is defined as a land area or facility for the temporary parking or storage of motor vehicles used personally, for business, or for commerce.</li> <li>(iv) Streets, roads, highways, freeways, and driveways. This category is defined as any paved impervious surface used for the transportation of automobiles, trucks, motorcycles, and other vehicles.</li> </ul> </li> </ul> |
| Yes      | No<br>⊠ | (d)     | New or redevelopment projects that create and/or replace 2,500 square feet or<br>more of impervious surface (collectively over the entire project site), and<br>discharging directly to an Environmentally Sensitive Area (ESA). "Discharging<br>directly to" includes flow that is conveyed overland a distance of 200 feet or less<br>from the project to the ESA, or conveyed in a pipe or open channel any distance as<br>an isolated flow from the project to the ESA (i.e. not commingled with flows from<br>adjacent lands).<br><i>Note: ESAs are areas that include but are not limited to all Clean Water Act<br/>Section 303(d) impaired water bodies; areas designated as Areas of Special<br/>Biological Significance by the State Water Board and San Diego Water Board;<br/>State Water Quality Protected Areas; water bodies designated with the RARE<br/>beneficial use by the State Water Board and San Diego Water Board; and any<br/>other equivalent environmentally sensitive areas which have been identified by<br/>the Copermittees.</i>                              |
| Yes      | No<br>⊠ | (e)     | <ul> <li>New development projects, or redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface, that support one or more of the following uses:</li> <li>(i) Automotive repair shops. This category is defined as a facility that is categorized in any one of the following SIC codes: 5013, 5014, 5541, 7532-7534, or 7536-7539.</li> <li>(ii) Retail gasoline outlets (RGOs). This category includes RGOs that meet the following criteria: (a) 5,000 square feet or more or (b) a projected Average Daily Traffic (ADT) of 100 or more vehicles per day.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Yes                                                                                                                                              | No                                                                                                                                                                               | (e)     | New development projects, or redevelopment projects that create and/or replace                                                                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                  | $\boxtimes$                                                                                                                                                                      |         | 5,000 square feet or more of impervious surface, that support one or more of the                                                                    |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | following uses:                                                                                                                                     |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | (iii) Automotive repair shops. This category is defined as a facility that is                                                                       |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | categorized in any one of the following SIC codes: 5013, 5014, 5541, 7532-                                                                          |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | 7534, or 7536-7539.                                                                                                                                 |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | (iv) Retail gasoline outlets (RGOs). This category includes RGOs that meet the                                                                      |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | following criteria: (a) 5,000 square feet or more or (b) a projected Average                                                                        |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | Daily Traffic (ADT) of 100 or more vehicles per day.                                                                                                |  |  |
| Yes                                                                                                                                              | No                                                                                                                                                                               | (f)     | New or redevelopment projects that result in the disturbance of one or more acres                                                                   |  |  |
|                                                                                                                                                  | $\boxtimes$                                                                                                                                                                      |         | of land and are expected to generate pollutants post construction.                                                                                  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | Note: See Storm Water Design Manual Section 1.4.2 for additional guidance.                                                                          |  |  |
| Furthe                                                                                                                                           | r guidano                                                                                                                                                                        | ce may  | ect is a Priority Development Project (PDP).<br>be found in Chapter 1 and Table 1-2 of the Storm Water Design Manual.<br>r redevelopment PDPs only: |  |  |
| The                                                                                                                                              | roo of                                                                                                                                                                           | ovieti  | f(x) = f(x)                                                                                                                                         |  |  |
|                                                                                                                                                  | The area of existing (pre-project) impervious area at the project site is:ft <sup>2</sup> (A) The total proposed newly created or replaced impervious area isft <sup>2</sup> (B) |         |                                                                                                                                                     |  |  |
| The total proposed newly created or replaced impervious area isft <sup>2</sup> (B)<br>Percent impervious surface created or replaced (B/A)*100:% |                                                                                                                                                                                  |         |                                                                                                                                                     |  |  |
|                                                                                                                                                  | The percent impervious surface created or replaced is (select one based on the above calculation):                                                                               |         |                                                                                                                                                     |  |  |
| □ less than or equal to fifty percent (50%) – only newly created or replaced impervious areas                                                    |                                                                                                                                                                                  |         |                                                                                                                                                     |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         | sidered a PDP and subject to stormwater requirements                                                                                                |  |  |
|                                                                                                                                                  | OR                                                                                                                                                                               |         | ······································                                                                                                              |  |  |
|                                                                                                                                                  | □ grea                                                                                                                                                                           | ater th | an fifty percent (50%) – the entire project site is considered a PDP and subject to                                                                 |  |  |
|                                                                                                                                                  | stormwater requirements                                                                                                                                                          |         |                                                                                                                                                     |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         |                                                                                                                                                     |  |  |
|                                                                                                                                                  |                                                                                                                                                                                  |         |                                                                                                                                                     |  |  |

| Step                                                                                                                                          | Answer              | Progression                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------|
| Is the project a Standard Project,<br>Priority Development Project (PDP), or<br>exception to PDP definitions?                                 | Standard<br>Project | Standard Project requirements apply, including<br>Standard Project SWQMP.<br>Complete Form I-1. |
| To answer this item, complete Step 1<br>Project Type Determination Checklist<br>on Pages 1 and 2, and see PDP<br>exemption information below. | ⊠ PDP               | Standard and PDP requirements apply,<br>including PDP SWQMP.<br>SWQMP Required.                 |
| For further guidance, see Section 1.4 of the Storm Water Design Manual <i>in its entirety</i> .                                               | □ PDP with ACP      | If participating in offsite alternative compliance, complete Step 6.3 and an ACP SWQMP.         |
|                                                                                                                                               | PDP     Exemption   | Go to Step 1.2 below.                                                                           |

### **Step 1.1:** Storm Water Quality Management Plan requirements

### Step 1.2: Exemption to PDP definitions

| Is the project exempt from PDP definitions based on either of the following:<br>Projects that are only new or retrofit paved sidewalks, bicycle lanes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | If so:<br>Standard Project                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Infojects that are only new of retroit paved side walks, bicycle tarles, or trails that meet the following criteria:         <ol> <li>Designed and constructed to direct storm water runoff to adjacent vegetated areas, or other non-erodible permeable areas; OR</li> <li>Designed and constructed to be hydraulically disconnected from paved streets or roads [i.e., runoff from the new improvement does not drain directly onto paved streets or roads]; OR</li> <li>Designed and constructed with permeable pavements or surfaces in accordance with County of San Diego Green Streets Infrastructure;</li> </ol> </li> </ul> | requirements apply, AND<br>any additional requirements<br>specific to the type of<br>project. City concurrence<br>with the exemption is |
| Projects that are only retrofitting or redeveloping existing paved<br>alleys, streets or roads that are designed and constructed in<br>accordance with the City of Escondido Guidance on Green<br>Infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                             | PDP Exempt.                                                                                                                             |
| Discussion / justification, and additional requirements for exceptions to PDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | definitions, if applicable:                                                                                                             |

### Step 2: Construction Storm Water BMPs

Construction storm water BMPs shall be shown on the Grading Plan and (if applicable) included in the Storm Water Pollution Prevention Plan (SWPPP).

### Step 3: City of Escondido PDP SWQMP Site Information Checklist (Form I-2a)

### Step 3.1: Description of Existing Site Condition

Current Status of the Site (select all that apply):

⊠Existing development

 $\Box$  Previously graded but not built out

 $\Box \mbox{Demolition}$  completed without new construction

□ Agricultural or other non-impervious use

□Vacant, undeveloped/natural

Description / Additional Information:

Existing Land Cover Includes (select all that apply and provide each area on site): □Vegetative Cover \_\_\_\_\_Acres (\_\_\_\_\_Square Feet) ⊠Non-Vegetated Pervious Areas 2.76 Acres (120,225 Square Feet) ⊠Impervious Areas 0.71 Acres (30,749 Square Feet)

Description / Additional Information:

Underlying Soil belongs to Hydrologic Soil Group (select all that apply):

 $\Box$  NRCS Type A

□NRCS Type B

⊠NRCS Type C

□NRCS Type D

Approximate Depth to Groundwater (GW) (or N/A for no infiltration BMPs):

□GW Depth < 5 feet

 $\Box$ 5 feet < GW Depth < 10 feet

 $\Box$  10 feet < GW Depth < 20 feet

 $\boxtimes$  GW Depth > 20 feet

Existing Natural Hydrologic Features (select all that apply):

 $\Box$ Watercourses

- □Seeps
- Springs

□Wetlands

□None

□Other

Description / Additional Information:

### Step 3.2: Description of Existing Site Drainage Patterns

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

(1) Whether existing drainage conveyance is natural or urban;

(2) Is runoff from offsite conveyed through the site? if yes, quantify all offsite drainage areas, design flows, and locations where offsite flows enter the project site, and summarize how such flows are conveyed through the site;

(3) Provide details regarding existing project site drainage conveyance network, including any existing storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels; and

(4) Identify all discharge locations from the existing project site along with a summary of conveyance system size and capacity for each of the discharge locations. Provide summary of the pre-project drainage areas and design flows to each of the existing runoff discharge locations.

Describe existing site drainage patterns:

In the existing condition, a portion of the adjacent properties in the east drains into the project site. The offsite runon appears to join the onsite runoff and sheet flow in a northwesterly direction, exiting the site onto South Escondido Boulevard. The storm water is captured by a catch basin approximately 30' north of the site. There appears to be a privately maintained storm drain system running parallel to South Escondido Boulevard from the catch basin through the adjacent mobile home property, draining to a natural channel leading to Kit Carson Creek – however, the name of this system is not known and is not shown in documents provided by the City of Escondido.

#### Step 3.3: Description of Proposed Site Development

Project Description / Proposed Land Use and/or Activities:

This development project proposes 10 multi-family residential buildings of 62 townhome units in total and supporting facilities including paved streets, parking, and open space area on 3.47 gross acres of land. The site is divided into four drainage management areas. Drainage area A-1 consists of buildings, street, alleyways, sidewalks, and landscape. Area A-2 consists of open space area and sidewalk. Area A-3 is reserved for the grading of a pad for the neighboring property for a future RV parking. Area A-4 is a self-mitigating DMA.

List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features)

Building rooftops, streets, alleyways, sidewalks, parking, and driveways.

List/describe proposed pervious features of the project (e.g., landscape areas)

Landscape area, open space

Does the project include grading and changes to site topography? ⊠Yes □No

Description / Additional Information:

The existing site will be graded to provide adequate drainage for the proposed development.

Insert acreage or square feet for the different land cover types in the table below:

| Change in Land Cover Type Summary |                             |                             |         |  |  |
|-----------------------------------|-----------------------------|-----------------------------|---------|--|--|
| Land Cover Type                   | Existing                    | Proposed                    | Percent |  |  |
|                                   | (acres or ft <sup>2</sup> ) | (acres or ft <sup>2</sup> ) | Change  |  |  |
| Vegetation                        | 0                           | 0.53 ac                     | -       |  |  |
| Pervious (non-vegetated)          | 2.76 ac                     | 0.51 ac                     | -82%    |  |  |
| Impervious                        | 0.71 ac                     | 2.43 ac                     | +242%   |  |  |

### Step 3.4: Description of Proposed Site Drainage Patterns

Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)?

⊠Yes ⊡No

If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre- and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.

Describe proposed site drainage patterns:

Offsite runon from the adjacent properties in the east drains onto the subject site in the existing condition. To capture the runon from the adjacent properties, a concrete ditch is proposed along the easterly grading boundary. The runon will bypass the onsite treatment system and enter a proposed curb inlet on S. Escondido Blvd, which will connect to the proposed 24" storm drain in S. Escondido Blvd. The proposed onsite grading generally follows the existing drainage pattern. Alleys A and G drain from east to west at centerline slopes between approximately 2% to 7% and Alleys B, C, D, E, and F drain from south to north at approximately 3%. Drain inlets are proposed to be installed at the entrance of each alley and catch basins will be installed in the west end of Alleys A and G to capture stormwater runoff. The runoff generated from offsite grading of the neighboring property is proposed to be intercepted by a storm inlet and comingle with the onsite flows in the proposed storm drain system. As the project site is subject to hydromodification requirements, the collected onsite runoff will be detained in three 10.5'W x 6.5'H underground storage facilities with an orifice to control the outflow from the storage. Refer to the Hydromodification Analysis provided in Attachment 2. The outflow from the storage will then flow to a BioClean Modular Wetland unit for water quality treatment. The treated water will discharge to a proposed 24" storm drain facility in S. Escondido Boulevard. For storm events larger than the water quality event, the system is designed to attenuate peak storm flows. Refer to the SWQMP exhibits for details and a section. Additional discussion of peak storm detention is provided in the project hydrology report.

### Step 3.5: Potential Pollutant Source Areas

Identify whether any of the following features, activities, and/or pollutant source areas will be present (select all that apply).

- $\boxtimes$ On-site storm drain inlets
- □Interior floor drains and elevator shaft sump pumps
- □Interior parking garages
- □Need for future indoor & structural pest control
- ⊠Landscape/Outdoor Pesticide Use
- $\Box$ Pools, spas, ponds, decorative fountains, and other water features
- □Food service
- □Refuse areas
- □Industrial processes
- Outdoor storage of equipment or materials
- □Vehicle and Equipment Cleaning
- □Vehicle/Equipment Repair and Maintenance
- □Fuel Dispensing Areas
- □Loading Docks
- $\boxtimes$  Fire Sprinkler Test Water
- □Miscellaneous Drain or Wash Water
- $\boxtimes$  Plazas, sidewalks, and parking lots
- $\Box$  Other (provide description)
- Description / Additional Information:

# Step 3.6: Identification and Narrative of Receiving Water and Pollutants of Concern

Describe flow path of storm water from the project site discharge location(s), through urban storm conveyance systems as applicable, to receiving creeks, rivers, and lagoons as applicable, and ultimate discharge to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable):

The project site drains to an 84" existing culvert approximately 650' north of the subject site which discharge to a natural drainage channel. The natural drainage channel connects to the Kit Carson Creek which joins the Hodges Lake. The Hodges Lake connects to the San Dieguito River and ultimately discharge to the Pacific Ocean.

List any 303(d) impaired water bodies<sup>2</sup> within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

| 303(d) Impaired Water Body | Pollutant(s)/Stressor(s)  | TMDLs / WQIP Highest<br>Priority Pollutant |
|----------------------------|---------------------------|--------------------------------------------|
| Kit Carson Creek           | Pentachlorophenol (PCP)   | Pentachlorophenol (PCP)                    |
| Kit Carson Creek           | Total Dissolved Solids    | Total Dissolved Solids                     |
| Hodges, Lake               | Color                     | Color                                      |
| Hodges, Lake               | Manganese                 | Manganese                                  |
| Hodges, Lake               | Mercury                   | Mercury                                    |
| Hodges, Lake               | Nitrogen                  | Nitrogen                                   |
| Hodges, Lake               | Phosphorus                | Phosphorus                                 |
| Hodges, Lake               | Turbidity                 | Turbidity                                  |
| Hodges, Lake               | рН                        | рН                                         |
| San Dieguito River         | Benthic Community Effects | Benthic Community Effects                  |
| San Dieguito River         | Indicator Bacteria        | Indicator Bacteria                         |
| San Dieguito River         | Nitrogen                  | Nitrogen                                   |
| San Dieguito River         | Phosphorus                | Phosphorus                                 |
| San Dieguito River         | Total Dissolved Solids    | Total Dissolved Solids                     |
| San Dieguito River         | Toxicity                  | Toxicity                                   |

Identification of Project Site Pollutants\* \*Identification of project site pollutants below is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs. Note the project must also participate in an alternative compliance program (unless prior lawful approval to meet earlier PDP requirements is demonstrated).

Identify pollutants expected from the project site based on all proposed use(s) of the site (see Storm Water Design Manual Appendix B.6):

| Pollutant                      | Not Applicable to the Project Site | Anticipated from the<br>Project Site | Also a Receiving<br>Water Pollutant of<br>Concern |
|--------------------------------|------------------------------------|--------------------------------------|---------------------------------------------------|
| Sediment                       |                                    | X                                    | Х                                                 |
| Nutrients                      |                                    | Х                                    | Х                                                 |
| Heavy Metals                   |                                    | X                                    | Х                                                 |
| Organic Compounds              | Х                                  |                                      |                                                   |
| Trash & Debris                 |                                    | X                                    |                                                   |
| Oxygen Demanding<br>Substances | Х                                  |                                      |                                                   |
| Oil & Grease                   |                                    | X                                    |                                                   |
| Bacteria & Viruses             | Х                                  |                                      |                                                   |
| Pesticides                     |                                    | Х                                    | Х                                                 |

<sup>&</sup>lt;sup>2</sup> The current list of Section 303(d) impaired water bodies can be found at <a href="http://www.waterboards.ca.gov/water\_issues/programs/water\_quality\_assessment/#impaired">http://www.waterboards.ca.gov/water\_issues/programs/water\_quality\_assessment/#impaired</a>

### Step 3.7: Hydromodification Management Requirements

Do hydromodification management requirements apply (see Section 1.6 of the Storm Water Design Manual)?

- ⊠Yes, hydromodification management requirements for flow control and preservation of critical coarse sediment yield areas are applicable.
- □No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.
- □No, the project will discharge runoff directly to conveyance channels whose bed and bank are concrete-lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.
- $\Box$  No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA<sup>3</sup> for the watershed in which the project resides.

Description / Additional Information (to be provided if a 'No' answer has been selected above):

<sup>&</sup>lt;sup>3</sup>The Watershed Management Area Analysis (WMAA) is an optional element for inclusion in the Water Quality Improvement Plans (WQIPs) described in the 2013 MS4 Permit [Provision B.3.b.(4)]. It is available online at the Project Clean Water website: http://www.projectcleanwater.org/index.php?option=com\_content&view=article&id=248

#### Step 3.7.1: Critical Coarse Sediment Yield Areas\*

#### \*This Section only required if hydromodification management requirements apply Based on the maps provided within the WMAA, do potential critical coarse sediment yield areas exist within the project drainage boundaries?

No, no critical coarse sediment yield areas to be protected based on WMAA maps. See WMAA exhibit in Attachment 2c

If yes, have any of the optional analyses presented in Section 6.2 of the manual been performed?

6.2.1 Verification of GLUs (classification that provides an estimate of sediment yield based on geology, hillslope, and land cover) Onsite

6.2.2 Downstream Systems Sensitivity to Coarse Sediment

6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite No optional analyses performed, the project will avoid critical coarse sediment yield areas identified based on WMAA maps

If optional analyses were performed, what is the final result?

Discussion / Additional Information:

N/A

Flow Control for Post-Project Runoff\*

| *This Section only required if hydromodification management requirements apply                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List and describe point(s) of compliance (POCs) for flow control for hydromodification<br>management (see Section 6.3.1). For each POC, provide a POC identification name or number<br>correlating to the project's HMP Exhibit and a receiving channel identification name or number<br>correlating to the project's HMP Exhibit. |
| The runoff from the entire site will convey to one single point of compliance (POC 1) which is located at the northwest corner of the project boundary.                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                    |
| Has a geomorphic assessment been performed for the receiving channel(s)?                                                                                                                                                                                                                                                           |
| $\boxtimes$ No, the low flow threshold is 0.1Q2 (default low flow threshold)                                                                                                                                                                                                                                                       |
| $\Box$ Yes, the result is the low flow threshold is 0.1Q2<br>$\Box$ Yes, the result is the low flow threshold is 0.3Q2                                                                                                                                                                                                             |
| $\Box$ Yes, the result is the low flow threshold is 0.5Q2                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                    |
| If a geomorphic assessment has been performed, provide title, date, and preparer:                                                                                                                                                                                                                                                  |
| N/A                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                    |
| Discussion / Additional Information: (optional)                                                                                                                                                                                                                                                                                    |
| N/A                                                                                                                                                                                                                                                                                                                                |

### Step 3.8: Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

The proposed grading for the development generally follows the existing topography. The higher, eastern portion of the site is proposed to be open space, while the pervious areas will be constructed on the western portion of the site. After extensive testing, it was found that soil infiltration rates were not favorable, rendering infiltration infeasible. Because the pervious area will be downstream of the open space area, an underground water storage facility BMP is proposed. All onsite storm flows, including runoff generated from the grading of the neighboring property, will reach the proposed BMP and low flows will outlet to a proposed Modular Wetlands biotreatment device.

#### **Optional Additional Information or Continuation of Previous Sections As Needed**

#### **Onsite Retention Requirements**

Onsite retention is required for this project, as a proprietary biofiltration system is proposed. Infiltration is not recommended for the project due to poor infiltration rates. Per correspondence with the City of Escondido, worksheets B.5-2 (Sizing Method for Volume Retention Criteria) and B.5-6 (Volume Retention for No Infiltration Condition) were completed to determine the DCV required to be retained onsite. Onsite retention requirement is satisfied by draining impervious areas to landscaped areas. See completed worksheets B.5-2 and B.5-6 in Attachment 1.

### Step 4: Source Control BMP Checklist (Form I-2b)

| Step 4.                                                   | Source control DMF checklist (101111                                                                                                                                                                                                                                                                         | -20)                                     |                                       |                                 |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|---------------------------------|
|                                                           | Source Control BMPs                                                                                                                                                                                                                                                                                          |                                          |                                       |                                 |
| applicable a<br>Manual for<br>checklists s<br>Water Desig | ment projects must implement source control BMPs 4.3<br>and feasible. See Chapter 4.2 and Appendix E of the C<br>information to implement source control BMPs shown<br>erve as guides only. Mark what elements are included<br>gn Manual Chapter 4 and Appendix E for more informa<br>BMPs for your project. | City Storm<br>in this che<br>d in your p | Water De<br>cklist. The<br>roject. Se | sign<br>e following<br>ee Storm |
| <ul> <li>"Yes</li> <li>4.2 is no</li> <li>"No"</li> </ul> | th category below pursuant to the following:<br>s" means the project will implement the source control<br>and/or Appendix E of the City Storm Water Design Ma<br>of required.<br>" means the BMP is applicable to the project but it is no                                                                   | nual. Disc                               | ussion / ju                           | stification                     |
| <ul> <li>"N/A<br/>inclu</li> </ul>                        | cussion / justification must be provided.<br>" means the BMP is not applicable at the project site bude the feature that is addressed by the BMP (e.g., the<br>erials storage areas). Discussion / justification must be                                                                                     | project ha                               | as no outo                            |                                 |
|                                                           | Source Control Requirement                                                                                                                                                                                                                                                                                   |                                          | Applied                               | ?                               |
| SC-1 Preve                                                | ntion of Illicit Discharges into the MS4                                                                                                                                                                                                                                                                     | ⊠Yes                                     | □No                                   | □N/A                            |
| Dire Dire Othe                                            | ct irrigation water away from impervious surfaces<br>ct vehicle wash water away from impervious surfaces<br>er:/<br><i>justification if SC-1 not implemented:</i>                                                                                                                                            |                                          |                                       |                                 |
| SC-2 Storm                                                | Drain Stenciling or Signage                                                                                                                                                                                                                                                                                  | ⊠Yes                                     | □No                                   | □N/A                            |
|                                                           | ncil or stamp storm drains with anti-dumping message<br>t signs prohibiting illegal dumping<br>er                                                                                                                                                                                                            |                                          |                                       |                                 |
| Discussion                                                | / justification if SC-2 not implemented:                                                                                                                                                                                                                                                                     |                                          |                                       |                                 |
|                                                           | ct Outdoor Materials Storage Areas from Rainfall,<br>unoff, and Wind Dispersal                                                                                                                                                                                                                               | □Yes                                     | □No                                   | ⊠N/A                            |
|                                                           | e materials inside a covered enclosure<br>ct runoff from downspouts and roofs away from storag<br>er                                                                                                                                                                                                         | e areas                                  |                                       |                                 |
| Discussion                                                | / justification if SC-3 not implemented: Not outdoor ma                                                                                                                                                                                                                                                      | aterials sto                             | orage area                            | Э.                              |

| <b>SC-4</b> Protect Materials Stored in Outdoor Work Areas from Rainfall, Run-On, Runoff, and Wind Dispersal                                                                                                                                                  | □Yes                                         | □No                             | ⊠N/A                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|
| <ul> <li>Locate work area away from storm drains or catch basin</li> <li>Work over impermeable surfaces where spills and pollut</li> <li>removed</li> </ul>                                                                                                   |                                              | captured                        | and                                                                                   |
| Discussion / justification if SC-4 not implemented:<br>Not material will be stored in outdoor work area                                                                                                                                                       |                                              |                                 |                                                                                       |
| <b>SC-5</b> Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal                                                                                                                                                                     | □Yes                                         | □No                             | ⊠N/A                                                                                  |
| <ul> <li>Locate trash containers in a roofed, walled enclosure</li> <li>Locate trash containers away from storm drains</li> </ul>                                                                                                                             |                                              |                                 |                                                                                       |
| Discussion / justification if SC-5 not implemented: No trash stor                                                                                                                                                                                             | age area.                                    |                                 |                                                                                       |
| <b>SC-6</b> Additional BMPs Based on Potential Sources of Runoff Pollutants (must answer for each source listed below):                                                                                                                                       |                                              |                                 |                                                                                       |
| A. On-site storm drain inlets                                                                                                                                                                                                                                 | ⊠Yes                                         | □No                             | □N/A                                                                                  |
| □ B. Interior floor drains and elevator shaft sump pumps                                                                                                                                                                                                      | □Yes                                         | □No                             | ⊠N/A                                                                                  |
| C. Interior parking garages                                                                                                                                                                                                                                   | □Yes                                         | □No                             | □N/A                                                                                  |
| □ D. Need for future indoor & structural pest control                                                                                                                                                                                                         | □Yes                                         | □No                             | ⊠N/A                                                                                  |
| E. Landscape/outdoor pesticide use                                                                                                                                                                                                                            | ⊠Yes                                         | □No                             | □N/A                                                                                  |
| F. Pools, spas, ponds, fountains, and other water features                                                                                                                                                                                                    | □Yes                                         | □No                             | ⊠N/A                                                                                  |
| □ G. Food service                                                                                                                                                                                                                                             | □Yes                                         | □No                             | ⊠N/A                                                                                  |
| □ H. Refuse areas                                                                                                                                                                                                                                             | □Yes                                         | □No                             | ⊠N/A                                                                                  |
|                                                                                                                                                                                                                                                               |                                              |                                 |                                                                                       |
| $\Box$ I. Industrial processes                                                                                                                                                                                                                                |                                              | □No                             | ⊠N/A                                                                                  |
|                                                                                                                                                                                                                                                               |                                              | □No<br>□No                      | ⊠ N/A<br>⊠ N/A                                                                        |
| <ul> <li>I. Industrial processes</li> <li>J. Outdoor storage of equipment or materials</li> <li>K. Vehicle and equipment cleaning</li> </ul>                                                                                                                  | □Yes                                         | -                               |                                                                                       |
| <ul> <li>I. Industrial processes</li> <li>J. Outdoor storage of equipment or materials</li> </ul>                                                                                                                                                             | □Yes<br>□Yes                                 | □No                             | ⊠N/A                                                                                  |
| <ul> <li>I. Industrial processes</li> <li>J. Outdoor storage of equipment or materials</li> <li>K. Vehicle and equipment cleaning</li> </ul>                                                                                                                  | □Yes<br>□Yes<br>□Yes                         | □No<br>□No                      | ⊠N/A<br>⊠N/A                                                                          |
| <ul> <li>I. Industrial processes</li> <li>J. Outdoor storage of equipment or materials</li> <li>K. Vehicle and equipment cleaning</li> <li>L. Vehicle/equipment repair and maintenance</li> </ul>                                                             | □Yes<br>□Yes<br>□Yes<br>□Yes                 | □No<br>□No<br>□No               | <ul> <li>⊠N/A</li> <li>⊠N/A</li> <li>⊠N/A</li> </ul>                                  |
| <ul> <li>I. Industrial processes</li> <li>J. Outdoor storage of equipment or materials</li> <li>K. Vehicle and equipment cleaning</li> <li>L. Vehicle/equipment repair and maintenance</li> <li>M. Fuel dispensing areas</li> </ul>                           | □Yes<br>□Yes<br>□Yes<br>□Yes<br>□Yes         | □No<br>□No<br>□No<br>□No        | <ul> <li>⊠ N/A</li> <li>⊠ N/A</li> <li>⊠ N/A</li> <li>⊠ N/A</li> </ul>                |
| <ul> <li>I. Industrial processes</li> <li>J. Outdoor storage of equipment or materials</li> <li>K. Vehicle and equipment cleaning</li> <li>L. Vehicle/equipment repair and maintenance</li> <li>M. Fuel dispensing areas</li> <li>N. Loading docks</li> </ul> | □Yes<br>□Yes<br>□Yes<br>□Yes<br>□Yes<br>□Yes | □No<br>□No<br>□No<br>□No<br>□No | <ul> <li>⊠ N/A</li> <li>⊠ N/A</li> <li>⊠ N/A</li> <li>⊠ N/A</li> <li>⊠ N/A</li> </ul> |

Discussion / justification if SC-6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above.

Note: Show all source control measures described above that are included in design capture volume calculations in the plan sheets of Attachment 5.

### Step 5: Site Design BMP Checklist (Form I-2c)

| step J.                                                     |                                                                                                                                                                                                                                                                                                | 20)                                                    |                                        |                                               |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|-----------------------------------------------|
|                                                             | Site Design BMPs                                                                                                                                                                                                                                                                               |                                                        |                                        |                                               |
| applicable a<br>Manual for i<br>checklists s<br>Water Desig | nent projects must implement site design BMPs Sl<br>and feasible. See Chapter 4.3 and Appendix E of the<br>nformation to implement site design BMPs shown<br>erve as guides only. Mark what elements are inclu-<br>gn Manual Chapter 4 and Appendix E for more infor<br>BMPs for your project. | ne City Storm v<br>in this checklis<br>uded in your pr | Water Des<br>st. The fol<br>roject. Se | sign<br>Iowing<br>e Storm                     |
| <ul> <li>"Yes<br/>and/<br/>not r</li> </ul>                 | h category below pursuant to the following:<br>"means the project will implement the site design<br>or Appendix E of the City Storm Water Design Ma<br>required.                                                                                                                               | nual. Discussi                                         | on / justifi                           | cation is                                     |
|                                                             | means the BMP is applicable to the project but it ussion / justification must be provided.                                                                                                                                                                                                     |                                                        | to impien                              | ient.                                         |
|                                                             | -                                                                                                                                                                                                                                                                                              |                                                        |                                        |                                               |
| inclu                                                       | " means the BMP is not applicable at the project s<br>ide the feature that is addressed by the BMP (e.g.,                                                                                                                                                                                      | , the project sit                                      | te has no                              |                                               |
| natu                                                        | ral areas to conserve). Discussion / justification m                                                                                                                                                                                                                                           | ust be provide                                         |                                        | <u>, , , , , , , , , , , , , , , , , , , </u> |
| CD 1 Maint                                                  | Site Design Requirement<br>ain Natural Drainage Pathways and Hydrologic                                                                                                                                                                                                                        |                                                        |                                        |                                               |
| Features                                                    | an Natural Drainage Fathways and Hydrologic                                                                                                                                                                                                                                                    | ⊠Yes                                                   | □No                                    | □N/A                                          |
|                                                             | tain existing drainage patterns                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
|                                                             | erve Natural Areas, Soils, and Vegetation                                                                                                                                                                                                                                                      | ⊠Yes                                                   | □No                                    | □N/A                                          |
| Regu                                                        | erve trees (see Zoning Code Art. 55 Grading & Ero<br>ulations)                                                                                                                                                                                                                                 |                                                        | Art. 62 La                             | indscape                                      |
|                                                             | d sensitive areas such as wetlands and waterways                                                                                                                                                                                                                                               | 5                                                      |                                        |                                               |
| Discussion                                                  | / justification if SD-2 not implemented:                                                                                                                                                                                                                                                       |                                                        |                                        |                                               |
| SD-3 Minim                                                  | ize Impervious Area                                                                                                                                                                                                                                                                            | ⊠Yes                                                   | □No                                    | □ N/A                                         |
|                                                             | all parking and driving aisles to minimum width req                                                                                                                                                                                                                                            |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
| Discussion                                                  | / justification if SD-3 not implemented:                                                                                                                                                                                                                                                       |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |
|                                                             |                                                                                                                                                                                                                                                                                                |                                                        |                                        |                                               |

|                                                                            |             | -    |      |
|----------------------------------------------------------------------------|-------------|------|------|
| SD-4 Minimize Soil Compaction                                              | ⊠Yes        | □No  | □N/A |
| Avoid compaction in planned landscaped spaces                              |             |      |      |
| Till and amend soil for improved infiltration capacity                     |             |      |      |
|                                                                            |             |      |      |
| Discussion / justification if SD-4 not implemented:                        |             |      |      |
|                                                                            |             |      |      |
|                                                                            |             |      |      |
| SD-5 Impervious Area Dispersion                                            | ⊠Yes        | □No  | □N/A |
| •                                                                          |             |      |      |
| <ul> <li>Drain rooftops, roads or sidewalks into adjacent lands</li> </ul> | scape areas |      |      |
| Drain impervious surfaces through pervious areas                           |             |      |      |
| Discussion / justification if SD-5 not implemented:                        |             |      |      |
|                                                                            |             |      |      |
|                                                                            |             |      |      |
|                                                                            |             |      |      |
| SD-6 Runoff Collection                                                     |             | □Yes |      |
| Discussion / justification if SD-6 not implemented:                        | ⊠Yes        | □No  | □N/A |
|                                                                            |             |      |      |
|                                                                            |             |      |      |
|                                                                            |             |      |      |
| <b>SD-7</b> Landscaping with Native or Drought Tolerant Species            |             |      |      |
| Discussion / justification if SD-7 not implemented:                        | ⊠Yes        | □No  | □N/A |
|                                                                            |             |      |      |
|                                                                            |             |      |      |
|                                                                            |             |      |      |
| SD-8 Harvesting and Using Precipitation                                    |             | 1    |      |
| Discussion / justification if SD-8 not implemented:                        | □Yes        | □No  | ⊠N/A |
| Low demand on urinal, toilet, and irrigation water.                        |             |      |      |
| See Form B.3-1 in Attachment 1a                                            |             |      |      |
|                                                                            |             |      |      |

Note: Show all site design measures described above that are included in design capture volume calculations in the plan sheets of Attachment 5.

### Step 6: PDP Structural BMPs (Form I-3)

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the Storm Water Design Manual). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the Storm Water Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the City at the completion of construction. This may include requiring the project owner or project owner's representative and engineer of record to certify construction of the structural BMPs (see Section 8.2.3.2 of the Storm Water Design Manual). PDP structural BMPs must be maintained into perpetuity, and the City must confirm the maintenance (see Section 7 of the Storm Water Design Manual).

Use this section to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (Step 6.2) for each structural BMP within the project (copy the BMP summary information sheet [Step 6.2] as many times as needed to provide summary information for each individual structural BMP).

### Step 6.1: Description of structural BMP strategy

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the Storm Water Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate. At the end of this discussion provide a summary of all the structural BMPs within the project including the type and number.

Based on the preliminary geotechnical investigation prepared by Leighton and Associates, Inc., the project site has an infiltration rate of 0.71inch/hour at a small portion of the project entrance and no infiltration could be measured elsewhere in the site. Due to the low infiltration rate and limited area that can infiltrate, infiltration is infeasible for this project. Harvest and use is also infeasible due to low demand for toilet water, urinal water, and irrigation water.

To mitigate for potential hydromodification impacts of the proposed project, the collected runoff will first be detained in three interconnected 10.5'W x 6.5'H underground storage facilities with an orifice installed to restrict the outflow. For water quality treatment, downstream of the storage facility is a BioClean Modular Wetland unit, a proprietary biofiltration treatment BMP based on the City of Escondido Storm Water Design Manual (ESWDM). The Modular Wetland is sized according to Appendix F.2.2 of the ESWDM, utilizing a flow-based sizing method. Overflow from the storage system will bypass the Modular Wetland unit and discharge to a proposed 24" storm drain facility in S. Escondido Blvd. See Hydromodification Exhibit in Attachment 2b.

The storage system was sized based on drawdown time storage requirements, per Table B.5-3 in Appendix B of the ESWDM. Continuous simulation hydrologic modeling per Appendix G of the Escondido Storm Water Design Manual was used to generate proposed duration and frequency curves below that of the existing, between the  $0.1Q_2$  and  $Q_{10}$  threshold.

The design of the system will ensure that 100% of the water quality volume detained in the storage system will be treated by the Modular Wetland unit. Therefore, the proposed treatment system will meet both the water quality and hydromodification management requirements.

### Step 6.2: Structural BMP Checklist

| (Copy this page as needed to provide in                                                                                 | nformation for each individual proposed      |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| structural BMP)                                                                                                         |                                              |  |
| Structural BMP ID No. 1, Modular Wetland Unit                                                                           |                                              |  |
| Construction Plan Sheet No. SWQMP Exhibit                                                                               |                                              |  |
| Type of structural BMP:                                                                                                 |                                              |  |
| <ul> <li>Retention by harvest and use (HU-1)</li> <li>Retention by infiltration basin (INF-1)</li> </ul>                |                                              |  |
| $\Box$ Retention by limitation basin (INF-1)                                                                            |                                              |  |
| $\Box$ Retention by permeable pavement (INF-3)                                                                          |                                              |  |
| □Partial retention by biofiltration with partial rete                                                                   | ention (PR-1)                                |  |
| □Biofiltration (BF-1)                                                                                                   |                                              |  |
| $\Box Biofiltration$ with Nutrient Sensitive Media Des                                                                  |                                              |  |
| Proprietary Biofiltration (BF-3) meeting all req                                                                        |                                              |  |
| □ Flow-thru treatment control with prior lawful ap                                                                      |                                              |  |
| (provide BMP type/description in discussion s<br>□Flow-thru treatment control included as pre-tre                       |                                              |  |
| biofiltration BMP (provide BMP type/description                                                                         |                                              |  |
| biofiltration BMP it serves in discussion section                                                                       |                                              |  |
| □Flow-thru treatment control with alternative co                                                                        | mpliance (provide BMP type/description in    |  |
| discussion section below)                                                                                               | managamant                                   |  |
| □Detention pond or vault for hydromodification<br>□Other (describe in discussion section below)                         | management                                   |  |
|                                                                                                                         |                                              |  |
| Purpose:                                                                                                                |                                              |  |
| Pollutant control only                                                                                                  |                                              |  |
| UHydromodification control only                                                                                         | ation and the l                              |  |
| <ul> <li>Combined pollutant control and hydromodific</li> <li>Pre-treatment/forebay for another structural B</li> </ul> |                                              |  |
| Other (describe in discussion section below)                                                                            | IVIF                                         |  |
|                                                                                                                         |                                              |  |
| Who will certify construction of this BMP?                                                                              |                                              |  |
| Provide name and contact information for the                                                                            |                                              |  |
| party responsible to sign BMP verification<br>forms (See Section 8.2.3.2 of the Storm Water                             |                                              |  |
| Design Manual)                                                                                                          |                                              |  |
| Who will be the final owner of this BMP?                                                                                |                                              |  |
|                                                                                                                         | □Other (describe)                            |  |
| Who will maintain this BMP into perpetuity?                                                                             | ⊠HOA □Property Owner □City                   |  |
|                                                                                                                         | Other (describe)                             |  |
| Discussion (as needed):                                                                                                 | Bioclean Modular Wetland Unit with detention |  |
| (Continue on subsequent pages as necessary)                                                                             | storage facility.                            |  |
|                                                                                                                         |                                              |  |

### Step 6.2: Structural BMP Checklist

| (Copy this page as needed to provide information for each individual proposed structural BMP)                      |                           |  |  |
|--------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| Structural BMP ID No. 2, 3 – 8'W x 6.5'H Underground Storage Facility                                              |                           |  |  |
| Construction Plan Sheet No. SWQMP Exhibit                                                                          |                           |  |  |
| Type of structural BMP:                                                                                            |                           |  |  |
| $\Box$ Retention by harvest and use (HU-1)                                                                         |                           |  |  |
| □Retention by infiltration basin (INF-1)                                                                           |                           |  |  |
| □Retention by bioretention (INF-2)                                                                                 |                           |  |  |
| □Retention by permeable pavement (INF-3)                                                                           |                           |  |  |
| □Partial retention by biofiltration with partial rete                                                              | ention (PR-1)             |  |  |
| $\Box$ Biofiltration (BF-1)                                                                                        |                           |  |  |
| □Biofiltration with Nutrient Sensitive Media Des                                                                   |                           |  |  |
| □Proprietary Biofiltration (BF-3) meeting all requ                                                                 |                           |  |  |
| □Flow-thru treatment control with prior lawful ap                                                                  | •                         |  |  |
| (provide BMP type/description in discussion s                                                                      |                           |  |  |
| □ Flow-thru treatment control included as pre-tre                                                                  |                           |  |  |
| biofiltration BMP (provide BMP type/description<br>biofiltration BMP it serves in discussion section               |                           |  |  |
|                                                                                                                    |                           |  |  |
| Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion section below) |                           |  |  |
| ☑ Detention pond or vault for hydromodification                                                                    | management                |  |  |
| $\Box$ Other (describe in discussion section below)                                                                |                           |  |  |
|                                                                                                                    |                           |  |  |
| Purpose:                                                                                                           |                           |  |  |
| □Pollutant control only                                                                                            |                           |  |  |
| ⊠Hydromodification control only                                                                                    |                           |  |  |
| Combined pollutant control and hydromodific                                                                        |                           |  |  |
| □Pre-treatment/forebay for another structural B                                                                    | MP                        |  |  |
| $\Box$ Other (describe in discussion section below)                                                                |                           |  |  |
|                                                                                                                    |                           |  |  |
| Who will certify construction of this BMP?                                                                         |                           |  |  |
| Provide name and contact information for the party responsible to sign BMP verification                            |                           |  |  |
| forms (See Section 8.2.3.2 of the Storm Water                                                                      |                           |  |  |
| Design Manual)                                                                                                     |                           |  |  |
| Who will be the final owner of this BMP?                                                                           | HOA □Property Owner □City |  |  |
|                                                                                                                    | □Other (describe)         |  |  |
| Who will maintain this BMP into perpetuity?                                                                        | HOA □Property Owner □City |  |  |
|                                                                                                                    | □Other (describe)         |  |  |
| Discussion (as needed):                                                                                            |                           |  |  |
|                                                                                                                    |                           |  |  |
| (Continue on subsequent pages as necessary)                                                                        |                           |  |  |
|                                                                                                                    |                           |  |  |

### **Step 6.3: Offsite Alternative Compliance Participation Form**

| THIS FORM IS NOT APPLICABLE AT THIS TIME: An Alternative Compliance Program is                                                                                           |                                                                                                                                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| under consideration by the City of Escondido.                                                                                                                            |                                                                                                                                  |  |  |  |
| PDP INFORMATION                                                                                                                                                          |                                                                                                                                  |  |  |  |
| Record ID:                                                                                                                                                               |                                                                                                                                  |  |  |  |
| Assessor's Parcel Number(s) [APN(s)]                                                                                                                                     |                                                                                                                                  |  |  |  |
| .,,                                                                                                                                                                      |                                                                                                                                  |  |  |  |
| What are your PDP Pollutant Control Debits?<br>*See Attachment 1 of the PDP SWQMP                                                                                        |                                                                                                                                  |  |  |  |
| What are your PDP HMP Debits? (if applicable)<br>*See Attachment 2 of the PDP SWQMP                                                                                      |                                                                                                                                  |  |  |  |
| ACP Information                                                                                                                                                          |                                                                                                                                  |  |  |  |
| Record ID:                                                                                                                                                               |                                                                                                                                  |  |  |  |
| Assessor's Parcel Number(s) [APN(s)]                                                                                                                                     |                                                                                                                                  |  |  |  |
| Project Owner/Address                                                                                                                                                    |                                                                                                                                  |  |  |  |
| What are your ACP Pollutant Control Credits?<br>*See Attachment 1 of the ACP SWQMP                                                                                       |                                                                                                                                  |  |  |  |
| What are your ACP HMP Debits? (if applicable)<br>*See Attachment 2 of the ACP SWQMP                                                                                      |                                                                                                                                  |  |  |  |
|                                                                                                                                                                          |                                                                                                                                  |  |  |  |
| Is your ACP in the same watershed as your<br>PDP?<br>Yes<br>No                                                                                                           | Will your ACP project be completed prior to the completion of the PDP?                                                           |  |  |  |
| Does your ACP account for all Deficits<br>generated by the PDP?<br>Yes<br>No (PDP and/or ACP must be<br>redesigned to account for all deficits<br>generated by the PDP.) | What is the difference between your PDP<br>debits and ACP Credits?<br>*(ACP Credits -Total PDP Debits = Total<br>Earned Credits) |  |  |  |

### **ATTACHMENT 1**

### **BACKUP FOR PDP POLLUTANT CONTROL BMPS**

This is the cover sheet for Attachment 1.

#### Indicate which Items are Included behind this cover sheet:

| Attachment    | Contents                                                                                                                                                                                                                                                                                                                                                | Checklist                                |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Sequence      |                                                                                                                                                                                                                                                                                                                                                         |                                          |
| Attachment 1a | Storm Water Pollutant Control<br>Worksheet Calculations<br>-Worksheet B.2-1 (Required)<br>-Worksheet B.3-1 (Form I-4;<br>Required)<br>-Worksheet B.4-1 (if applicable)<br>-Worksheet B.5-1 (if applicable)<br>-Worksheet B.5-2 (if applicable)<br>-Worksheet B.5-3 (if applicable)<br>-Worksheet B.6-1 (if applicable)<br>-Summary Worksheet (optional) | ⊠Included                                |
| Attachment 1b | Form I-5, Categorization of Infiltration<br>Feasibility Condition (Required unless<br>the project will use harvest and<br>use BMPs)<br>Refer to Appendices C and D of the<br>Storm Water Design Manual to<br>complete Form I-5.                                                                                                                         |                                          |
| Attachment 1c | Form I-6, Factor of Safety and Design<br>Infiltration Rate Worksheet (Required<br>unless the project will use harvest and<br>use BMPs)<br>Refer to Appendices C and D of the<br>Storm Water Design Manual to<br>complete Form I-6.                                                                                                                      | project will use harvest and use<br>BMPs |
| Attachment 1d | DMA Exhibit (Required)<br>See DMA Exhibit Checklist on the<br>back of this Attachment cover sheet.                                                                                                                                                                                                                                                      | ⊠Included                                |
| Attachment 1e | Individual Structural BMP DMA<br>Mapbook (Required)<br>-Place each map on 8.5"x11" paper.<br>-Show at a minimum the DMA,<br>Structural BMP, and any existing<br>hydrologic features within the DMA.                                                                                                                                                     | □Included                                |

This page was left intentionally blank.

# Use this checklist to ensure the required information has been included on the DMA Exhibit:

The DMA Exhibit must identify:

Underlying hydrologic soil group

 $\Box$  Approximate depth to groundwater

Existing natural hydrologic features (watercourses, seeps, springs, wetlands)

 $\Box\mbox{Critical}$  coarse sediment yield areas to be protected

□Existing topography and impervious areas

Existing and proposed site drainage network and connections to drainage offsite

 $\Box$  Proposed demolition

 $\Box \mathsf{Proposed}\ \mathsf{grading}$ 

□ Proposed impervious features

□ Proposed design features and surface treatments used to minimize imperviousness

□ Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)

□ Potential pollutant source areas and corresponding required source controls (see Chapter 4, Appendix E.1, and Step 3.5)

Structural BMPs (identify location, structural BMP ID#, type of BMP, and size/detail)

| Worksheet B.2-1. DCV |
|----------------------|
|----------------------|

| Design Capture Volume (A-1) |                                                                       | Worksheet B-2.1 |             |                |
|-----------------------------|-----------------------------------------------------------------------|-----------------|-------------|----------------|
| 1                           | 85 <sup>th</sup> percentile 24-hr storm depth from Figure B.1-1       | d=              | 0.8         | inches         |
| 2                           | Area tributary to BMP (s)                                             | A=              | 2.65        | acres          |
| 3                           | Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1) | C=              | 0.9         | unitless       |
|                             | · · · · · · · · · · · · · · · · · · ·                                 |                 | 0           | cubic-         |
| 4                           | Street trees volume reduction                                         | TCV=            | 0           | feet<br>cubic- |
| 5                           | Rain barrels volume reduction                                         | RCV=            | U           | feet           |
| 6                           | Calculate DCV = $(3630 \times C \times d \times A) - TCV - RCV$       | DCV=            | 6,926       | cubic-<br>feet |
|                             | Design Capture Volume (A-2)                                           | V               | /orksheet l | B-2.1          |
| 1                           | 85 <sup>th</sup> percentile 24-hr storm depth from Figure B.1-1       | d=              | 0.8         | inches         |
| 2                           | Area tributary to BMP (s)                                             | A=              | 0.53        | acres          |
| 3                           | Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1) | C=              | 0.1         | unitless       |
| 4                           | Street trees volume reduction                                         | TCV=            | 0           | cubic-<br>feet |
| 4                           |                                                                       | 10.1            | 0           | cubic-         |
| 5                           | Rain barrels volume reduction                                         | RCV=            |             | feet           |
| 6                           | Calculate DCV = $(3630 \times C \times d \times A) - TCV - RCV$       | DCV=            | 154         | cubic-<br>feet |
|                             | Design Capture Volume (A-3)                                           | V               | /orksheet l | B-2.1          |
| 1                           | 85 <sup>th</sup> percentile 24-hr storm depth from Figure B.1-1       | d=              | 0.8         | inches         |
| 2                           | Area tributary to BMP (s)                                             | A=              | 0.08        | acres          |
| 3                           | Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1) | C=              | 0.9         | unitless       |
|                             |                                                                       |                 | 0           | cubic-         |
| 4                           | Street trees volume reduction                                         | TCV=            |             | feet<br>cubic- |
| 5                           | Rain barrels volume reduction                                         | RCV=            | 0           | feet           |
|                             | Calculate DCV =                                                       |                 | 209         | cubic-         |
| 6                           | (3630 x C x d x A) – TCV - RCV                                        | DCV=            |             | feet           |

|       |                                                                                                                                                                                                                                                                                                                                                                           | Project Name                    | TSMI | No. 20-0006 |         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------|-------------|---------|
|       | <b>ESCONDIDO</b><br>City of Choice                                                                                                                                                                                                                                                                                                                                        | BMP ID                          |      | 2           |         |
|       | Sizing Method for Volume R                                                                                                                                                                                                                                                                                                                                                | etention Criteria               | Work | sheet B.5-2 |         |
| 1     | Area draining to the BMP                                                                                                                                                                                                                                                                                                                                                  |                                 |      | 142006      | sq. ft. |
| 2     | Adjusted runoff factor for drainage are                                                                                                                                                                                                                                                                                                                                   | ea (Refer to Appendix B.1 and E | 3.2) | 0.77        |         |
| 3     | 85 <sup>th</sup> percentile 24-hour rainfall depth                                                                                                                                                                                                                                                                                                                        |                                 |      | 0.8         | inches  |
| 4     | Design capture volume [Line 1 x Line                                                                                                                                                                                                                                                                                                                                      | 2 x (Line 3/12)]                |      | 7289        | cu. ft. |
| Volum | e Retention Requirement                                                                                                                                                                                                                                                                                                                                                   |                                 |      | ł           |         |
| 5     | Measured infiltration rate in the DMA<br>Note:<br>When mapped hydrologic soil groups are used enter 0.10 for NRCS Type D soils and for NRCS<br>Type C soils enter 0.30<br>When in no infiltration condition and the actual measured infiltration rate is unknown enter 0.0 if<br>there are geotechnical and/or groundwater hazards identified in Appendix C or enter 0.05 |                                 |      | 0           | in/hr.  |
| 6     | Factor of safety                                                                                                                                                                                                                                                                                                                                                          |                                 |      | 2           |         |
| 7     | Reliable infiltration rate, for biofiltratio                                                                                                                                                                                                                                                                                                                              | n BMP sizing [Line 5 / Line 6]  |      | 0           | in/hr.  |
| 8     | Average annual volume reduction target (Figure B.5-2)<br>When Line 7 > 0.01 in/hr. = Minimum (40, 166.9 x Line 7 +6.62)<br>When Line 7 $\leq$ 0.01 in/hr. = 3.5%                                                                                                                                                                                                          |                                 |      | 3.5         | %       |
| 9     | Fraction of DCV to be retained (Figure B.5-3)<br>When Line 8 > 8% =<br>9 0.0000013 x Line 8 <sup>3</sup> - 0.000057 x Line 8 <sup>2</sup> + 0.0086 x Line 8 - 0.014<br>When Line 8 $\leq$ 8% = 0.023                                                                                                                                                                      |                                 |      | 0.023       |         |
| 10    | Target volume retention [Line 9 x Line                                                                                                                                                                                                                                                                                                                                    | e 4]                            |      | 168         | cu. ft. |

|                |                                                          | Project Name                                                                           |                   |                   | TSM N    | o. 20-00  | 006               |         |
|----------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------|-------------------|----------|-----------|-------------------|---------|
| City of t      | Choice                                                   | BMP ID                                                                                 |                   |                   |          | 2         |                   |         |
|                | Volume Retentio                                          | n for No Infiltration Condition                                                        |                   |                   |          | Work      | ksheet B.5-6      |         |
| 1              | Area draining to the biofiltrat                          | ion BMP                                                                                |                   | ·                 |          |           | 142006            | sq. ft. |
| 2              | Adjusted runoff factor for dra                           | inage area (Refer to Appendix B.1 and                                                  | B.2)              |                   |          |           | 0.76993865        |         |
| 3              | Effective impervious area dra                            | aining to the BMP [Line 1 x Line 2]                                                    |                   |                   |          |           | 109336            | sq. ft. |
| 4              | Required area for Evapotran                              | spiration [Line 3 x 0.03]                                                              |                   |                   |          |           | 3280              | sq. ft. |
| 5              | Biofiltration BMP Footprint                              |                                                                                        |                   |                   |          |           |                   | sq. ft. |
| Landscape Ar   | ea (must be identified on DS                             | -3247)                                                                                 |                   |                   |          |           |                   | -       |
|                |                                                          | Identification                                                                         | 1                 | 2                 |          | 3         | 4                 | 5       |
| 6              | Landscape area that meet th<br>Fact Sheet (sq. ft.)      | e requirements in SD-B and SD-F                                                        | 23087             |                   |          |           |                   |         |
| 7              | Impervious area draining to t                            | the landscape area (sq. ft.)                                                           | 4897              |                   |          |           |                   |         |
| 8              | Impervious to Pervious Area<br>[Line 7/Line 6]           | ratio                                                                                  | 0.21              | 0.00              | C        | .00       | 0.00              | 0.00    |
| 9              | Effective Credit Area<br>If (Line 8 >1.5, Line 6, Line 7 | //1 5]                                                                                 | 3265              | 0                 |          | 0         | 0                 | 0       |
| 10             | Sum of Landscape area [sur                               | -                                                                                      |                   |                   |          |           | 3265              | sq. ft. |
| 11             |                                                          | ranspiration [Line 5 + Line 10]                                                        |                   |                   |          |           | 3265              | sq. ft. |
| Volume Reten   | tion Performance Standard                                |                                                                                        |                   |                   |          |           |                   |         |
| 12             | Is Line 11 ≥ Line 4?                                     |                                                                                        |                   | N                 | o, Proce | ed to Lir | ne 13             |         |
| 13             |                                                          | standard met through the BMP footprin                                                  | t and/or landscap | oing [Line 11/Lir | ne 4]    |           | 1                 |         |
| 14             | Target Volume Retention [Li                              | ne 10 from Worksheet B.5.2]                                                            |                   |                   |          |           | 168               | cu. ft. |
| 15             | Volume retention required fro<br>[(1-Line 13) x Line 14] | om other site design BMPs                                                              |                   |                   |          |           | 0                 | cu. ft. |
| Site Design Bl | MP                                                       |                                                                                        |                   |                   |          |           |                   | •       |
|                | Identification                                           | Site Desi                                                                              | gn Type           |                   |          |           | Credit            |         |
|                | 1                                                        |                                                                                        |                   |                   |          |           |                   | cu. ft. |
|                | 2                                                        |                                                                                        |                   |                   |          |           |                   | cu. ft. |
|                | 3                                                        |                                                                                        |                   |                   |          |           |                   | cu. ft. |
| 16             | 4                                                        |                                                                                        |                   |                   |          |           |                   | cu. ft. |
| 10             | 5                                                        |                                                                                        |                   |                   |          |           |                   | cu. ft. |
|                | 16 Credits for Id's 1 to 5]                              | nefits from other site design BMPs (e.g.<br>ww the site design credit is calculated in |                   | , <b>-</b>        | Line     |           | 0                 | cu. ft. |
| 17             | ls Line 16 ≥ Line 15?                                    |                                                                                        |                   | Volume Reten      | tion Per | ormanc    | e Standard is Met |         |

| Harvest and                                                                                                                                                                                 | Use Feasibility Checklist                                                                                                                                                                                                                                                                                    | Form I-4                                                     |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>1. Is there a demand for harvested water season?</li> <li>Toilet and urinal flushing</li> <li>Landscape irrigation</li> <li>Other:</li> </ul>                                      | <ul> <li>Toilet and urinal flushing</li> <li>Landscape irrigation</li> </ul>                                                                                                                                                                                                                                 |                                                              |  |  |  |  |  |
|                                                                                                                                                                                             | ticipated average wet season demand ove<br>oilet/urinal flushing and landscape irrigatio                                                                                                                                                                                                                     | -                                                            |  |  |  |  |  |
| 3. Calculate the DCV using worksheet E DCV = (cubic feet)                                                                                                                                   | 3-2.1.                                                                                                                                                                                                                                                                                                       |                                                              |  |  |  |  |  |
| 3a. Is the 36 hour demand greater than<br>or equal to the DCV?<br>□ Yes / □ No<br>↓                                                                                                         | 3b. Is the 36 hour demand greater<br>0.25DCV but less than the full DCV?<br>□ Yes / □ No<br>↓                                                                                                                                                                                                                | than 3c. Is the 36 hour demand less<br>than 0.25DCV?         |  |  |  |  |  |
| Harvest and use appears to be feasible.<br>Conduct more detailed evaluation and<br>sizing calculations to confirm that DCV<br>can be used at an adequate rate to meet<br>drawdown criteria. | Harvest and use may be feasible. Con-<br>more detailed evaluation and se<br>calculations to determine feasibility. Ha<br>and use may only be able to be used<br>portion of the site, or (optionally) the ste<br>may need to be upsized to meet long<br>capture targets while draining in longer th<br>hours. | sizing to be infeasible.<br>arvest<br>for a<br>orage<br>term |  |  |  |  |  |
| Is harvest and use feasible based on furth<br>Yes, refer to Appendix E to select and<br>No, select alternate BMPs.                                                                          |                                                                                                                                                                                                                                                                                                              |                                                              |  |  |  |  |  |

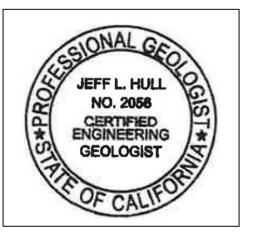
### PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

|                                                                          | Facto            | For                                                   | rm I-6                 |                        |                                                            |
|--------------------------------------------------------------------------|------------------|-------------------------------------------------------|------------------------|------------------------|------------------------------------------------------------|
| Factor Category                                                          |                  | Factor Description                                    | Assigned<br>Weight (w) | Factor<br>Value<br>(v) | $\begin{array}{c} Product\\ (p)\\ p = w \ge v \end{array}$ |
|                                                                          |                  | Soil assessment methods                               | 0.25                   | 0.25                   | 0.0625                                                     |
|                                                                          |                  | Predominant soil texture                              | 0.25                   | 0.75                   | 0.1875                                                     |
| А                                                                        | Suitability      | Site soil variability                                 | 0.25                   | 0.75                   | 0.1875                                                     |
| 11                                                                       | Assessment       | Depth to groundwater /<br>impervious layer            | 0.25                   | 0.50                   | 0.125                                                      |
|                                                                          |                  | uitability Assessment Safety Factor, $S_A = \Sigma p$ |                        | 2.25                   |                                                            |
|                                                                          |                  | Level of pretreatment/ expected sediment loads        | 0.5                    | 0.50                   | 0.25                                                       |
| В                                                                        | Design           | Redundancy/resiliency                                 | 0.25                   | 0.50                   | 0.125                                                      |
|                                                                          |                  | Compaction during construction                        | 0.25                   | 0.50                   | 0.125                                                      |
|                                                                          |                  | Design Safety Factor, $S_B = \Sigma_P$                |                        |                        | 1.0625                                                     |
| Con                                                                      | nbined Safety Fa |                                                       | 2.39                   |                        |                                                            |
| Observed Infiltration Rate, inch/hr, Kobserved                           |                  |                                                       |                        | Max = 2.48 in/hr       |                                                            |
| (corrected for test-specific bias)                                       |                  |                                                       | (unc                   | corrected)             |                                                            |
| Design Infiltration Rate, in/hr, $K_{design} = K_{observed} / S_{total}$ |                  |                                                       |                        |                        | 1.037                                                      |
| Sup                                                                      | porting Data     |                                                       |                        |                        |                                                            |
|                                                                          |                  |                                                       |                        |                        |                                                            |

Briefly describe infiltration test and provide reference to test forms:

Two deep bore-hole percolation tests were performed using the falling head procedure in accordance with County of Riverside guidelines. Tests were conducted in zone encompassing alluvium/bedrock contact, using 2-inch diameter PVC casing, slotted between 5 and 15 feet below existing grades. Two additional shallow percolation tests were preformed within the bottom of separate exploratory test pits by advancing a 4-inch diameter hand auger to a depth of 1.1 feet. Calculated infiltration rates were determined via the Porchet Method with an applied safety factor. Due to variability in yielded field rates use of a full-infiltration system is not recommended. Given close proximity of groundwater to zone of feasible infiltration, use of partial infiltration is feasible, but with depth and location restrictions. Please refer to our Preliminary Geotechncial Report, dated May 2019.

### PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP


| Factor of Safety and Design Infiltration Rate | Form I-6      |
|-----------------------------------------------|---------------|
| Worksheet                                     | Certification |
|                                               |               |

### The Geotechnical Engineer certifies they completed Form I-6 (see Appendix C.4.3).

Professional Geotechnical Engineer's Printed Name:

Professional Geotechnical Engineer's Signed Name:

Jeff 1. Wull 5-22-19 Date:



### **Categorization of Infiltration Feasibility Condition**

#### FORM I-8

#### Part 1 - Full Infiltration Feasibility Screening Criteria

Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?

| Criteria | Screening Question                                                                                                                                                                                                                                                        | Yes | No |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 1        | Is the estimated reliable infiltration rate below proposed<br>facility locations greater than 0.5 inches per hour? The response<br>to this Screening Question shall be based on a comprehensive<br>evaluation of the factors presented in Appendix C.2 and Appendix<br>D. |     | Х  |

#### Provide basis:

Based on our field percolation testing, the "reliable" infiltration rates for the weathered granitic bedrock zone beneath the subject site range from 0.00 to 2.48 inches per hour. Calculated infiltration rates via the Porchet Method, including application of a 2.39 safety factor, are equivalent to a maximum of approximately 1.04 inches per hour. While the maximum factored rate is greater than 0.5 inches per hour, the variability in test results indicates a soil zone that is only locally feasible for infiltration, and thus our conclusion that the site is not recommended for full infiltration system use.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

| 2 | Can infiltration greater than 0.5 inches per hour be allowed<br>without increasing risk of geotechnical hazards (slope stability,<br>groundwater mounding, utilities, or other factors) that cannot<br>be mitigated to an acceptable level? The response to this<br>Screening Question shall be based on a comprehensive evaluation of<br>the factors presented in Appendix C.2. | Х |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|

Provide basis:

While it is possible that most geotechnical hazards and impacts to roadways, underground utilities/structures, slopes and other improvements, relating to use of full infiltration, can be mitigated within the vicinity of the proposed infiltration site through grading, set-backs, deepened foundations and/or other measures, there is a remote chance that increases in the relatively shallow groundwater (present at 22 feet), may pose a greater risk for groundwater mounding, during years of significant rainfall.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

| li                                                                                                                                                                                                | FORM I-8 Page 2 of 4                                                                                                                                                                                                                                                                                                                                                               |                    |                 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|--|--|--|
| Criteria                                                                                                                                                                                          | Screening Question                                                                                                                                                                                                                                                                                                                                                                 | Yes                | No              |  |  |  |
| 3                                                                                                                                                                                                 | Can infiltration greater than 0.5 inches per hour be allowed<br>without increasing risk of groundwater contamination (shallow<br>water table, storm water pollutants or other factors) that cannot<br>be mitigated to an acceptable level? The response to this<br>Screening Question shall be based on a comprehensive evaluation of<br>the factors presented in Appendix C.3.    | х                  |                 |  |  |  |
| Provide ba                                                                                                                                                                                        | asis:<br>ssible that the risk of groundwater contamination wo                                                                                                                                                                                                                                                                                                                      | uld not incre      | ase, provided   |  |  |  |
| there a infiltration                                                                                                                                                                              | re no contaminated soil or groundwater sites within on site.                                                                                                                                                                                                                                                                                                                       | 250 feet of        | the proposed    |  |  |  |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                    |                    |                 |  |  |  |
|                                                                                                                                                                                                   | e findings of studies; provide reference to studies, calculations, maps, data of study/data source applicability.                                                                                                                                                                                                                                                                  | a sources, etc. Pr | ovide narrative |  |  |  |
| 4                                                                                                                                                                                                 | Can infiltration greater than 0.5 inches per hour be allowed<br>without causing potential water balance issues such as change<br>of seasonality of ephemeral streams or increased discharge of<br>contaminated groundwater to surface waters? The response to<br>this Screening Question shall be based on a comprehensive evaluation<br>of the factors presented in Appendix C.3. | х                  |                 |  |  |  |
| Provide basis:<br>It is possible that water balance issues may not be affected, provided there are no<br>unlined site drainages/creeks/streams within 250 feet of the proposed infiltration site. |                                                                                                                                                                                                                                                                                                                                                                                    |                    |                 |  |  |  |
| Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.                              |                                                                                                                                                                                                                                                                                                                                                                                    |                    |                 |  |  |  |
| Part 1<br>Result*                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                    |                    |                 |  |  |  |

### FORM I-8 Page 3 of 4

#### Part 2 - Partial Infiltration vs. No Infiltration Feasibility Screening Criteria

Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated?

| Crite | eria | Screening Question                                                                                                                                                                                                                             | Yes | No |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 5     | 5    | <b>Do soil and geologic conditions allow for infiltration in any appreciable rate or volume?</b> The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. | Х   |    |

Provide basis:

Based on our field percolation results, which yielded a maximum factored infiltration rate of 1.037 inches per hour, use of a Partial Infiltration system would theoretically be feasible. However, of the four total tests conducted on the site, all within a narrow zone of weathered granite, over 75 percent of the tests yielded little to no measured rate of infiltration, or 0.0 inches per hour. The location of the system would need to be constrained to a small area. In addition, the relatively shallow depth to groundwater beneath the site (22 feet) presents a constraint. Although groundwater was measured during a year of substantially higher rainfall, and is likely close to its historical high, it would need only to experience a minor rise before interacting with infiltration waters. In this event the potential for groundwater mounding is increased.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.

|   | Can Infiltration in any appreciable quantity be allowed without<br>increasing risk of geotechnical hazards (slope stability,<br>croundwater mounding, utilities, or other factors) that cannot                |   |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6 | groundwater mounding, utilities, or other factors) that cannot<br>be mitigated to an acceptable level? The response to this Screening<br>Question shall be based on a comprehensive evaluation of the factors | X |
|   | presented in Appendix C.2.                                                                                                                                                                                    |   |

Provide basis:

The risk of geotechnical hazards and impacts to site improvements would be increased by use of partial infiltration, in that the relatively shallow depth to groundwater beneath the site could increase during years of heavy precipitation, and temporarily result in a groundwater mounding condition, which could in turn adversely impact underground utilities and other site improvements.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.

|                                                                                                                                                                               | FORM I-8 Page 4 of 4                                                                                                                                                                                                                                                                                                                |                 |               |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|--|--|--|
| Criteria                                                                                                                                                                      | Screening Question                                                                                                                                                                                                                                                                                                                  | Yes             | No            |  |  |  |
| 7                                                                                                                                                                             | Can Infiltration in any appreciable quantity be allowed without<br>posing significant risk for groundwater related concerns<br>(shallow water table, storm water pollutants or other factors)?<br>The response to this Screening Question shall be based on a<br>comprehensive evaluation of the factors presented in Appendix C.3. | Х               |               |  |  |  |
| Provide b                                                                                                                                                                     | asis:                                                                                                                                                                                                                                                                                                                               |                 |               |  |  |  |
| ground <sup>.</sup><br>infiltrati                                                                                                                                             | the groundwater surface lies only 22 feet benea<br>water contamination would not generally be increase<br>on, provided there are no contaminated soil or grou<br>he proposed infiltration site.                                                                                                                                     | ed through us   | se of partial |  |  |  |
|                                                                                                                                                                               | e findings of studies; provide reference to studies, calculations, maps, data<br>of study/data source applicability and why it was not feasible to mitigate                                                                                                                                                                         |                 |               |  |  |  |
| 8                                                                                                                                                                             | <b>Can infiltration be allowed without violating downstream water</b><br><b>rights</b> ? The response to this Screening Question shall be based on a<br>comprehensive evaluation of the factors presented in Appendix C.3.                                                                                                          | Х               |               |  |  |  |
| Provide b                                                                                                                                                                     | asis:                                                                                                                                                                                                                                                                                                                               |                 |               |  |  |  |
| Violatio                                                                                                                                                                      | n of downstream water rights is not anticipated base                                                                                                                                                                                                                                                                                | d on the site I | ocation and   |  |  |  |
| that there are no unlined site drainages/creeks/streams within 250 feet of the restricted location of a proposed system.                                                      |                                                                                                                                                                                                                                                                                                                                     |                 |               |  |  |  |
|                                                                                                                                                                               | e findings of studies; provide reference to studies, calculations, maps, data<br>of study/data source applicability and why it was not feasible to mitigate                                                                                                                                                                         |                 |               |  |  |  |
| Part 2<br>Result* If an answers from row 5-8 are yes then partial infiltration design is potentially feasible.<br>The feasibility screening category is Partial Infiltration. |                                                                                                                                                                                                                                                                                                                                     |                 |               |  |  |  |
|                                                                                                                                                                               | If any answer from row 5-8 is no, then infiltration of any volume is cons<br>infeasible within the drainage area. The feasibility screening category is                                                                                                                                                                             |                 |               |  |  |  |

### Compact (high rate) Biofiltration BMP Checklist

Form I-10

Compact (high rate) biofiltration BMPs have a media filtration rate greater than 5 in/hr. and a media surface area smaller than 3% of contributing area times adjusted runoff factor. Compact biofiltration BMPs are typically proprietary BMPs that may qualify as biofiltration.

A compact biofiltration BMP may satisfy the pollutant control requirements for a DMA onsite in some cases. This depends on the characteristics of the DMA **and** the performance certification/data of the BMP. If the pollutant control requirements for a DMA are met onsite, then the DMA is not required to participate in an offsite storm water alternative compliance program to meet its pollutant control obligations.

An applicant using a compact biofiltration BMP to meet the pollutant control requirements onsite must complete Section 1 of this form and include it in the PDP SWQMP. A separate form must be completed for each DMA. In instances where the City Engineer does not agree with the applicant's determination, Section 2 of this form will be completed by the City and returned to the applicant.

Section 1: Biofiltration Criteria Checklist (Appendix F)

Refer to Part 1 of the Storm Water Standards to complete this section. When separate forms/worksheets are referenced below, the applicant must also complete these separate forms/worksheets (as applicable) and include in the PDP SWQMP. The criteria numbers below correspond to the criteria numbers in Appendix F.

| Criteria                                                                                                                                                                                                                                                               | Answer                               | Progression                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u><b>Criteria 1 and 3</b></u> :<br>What is the infiltration condition of                                                                                                                                                                                              | O Full Infiltration<br>Condition     | <b>Stop</b> . Compact biofiltration BMP is not allowed.                                                                                                                                                                                                                                                                                                                                                                                                    |
| the DMA?<br>Refer to Section 5.4.2 and<br>Appendix C of the BMP Design<br>Manual (Part 1 of Storm Water<br>Standards) for guidance.<br>Applicant must complete and<br>include the following in the PDP<br>SWQMP submittal to support the<br>feasibility determination: | Partial<br>Infiltration<br>Condition | Compact biofiltration BMP is only allowed, if the target volume retention is met onsite (Refer to Table B.5-1 in Appendix B.5). Use Worksheet B.5-2 in Appendix B.5 to estimate the target volume retention (Note: retention in this context means reduction).<br>If the required volume reduction is achieved <b>proceed to Criteria 2</b> .<br>If the required volume reduction is not achieved, compact biofiltration BMP is not allowed. <b>Stop</b> . |
| <ul> <li>Infiltration Feasibility<br/>Condition Letter; or</li> <li>Worksheet C.4-1: Form I-8A<br/>and Worksheet C.4-2: Form I-<br/>8B.</li> <li>Applicant must complete and<br/>include all applicable sizing<br/>worksheets in the SWQMP<br/>submittal</li> </ul>    | No Infiltration<br>Condition         | Compact biofiltration BMP is allowed if volume<br>retention criteria in Table B.5-1 in Appendix B.5<br>for the no infiltration condition is met.<br>Compliance with this criterion must be<br>documented in the PDP SWQMP.<br>If the criteria in Table B.5-1 is met <b>proceed to</b><br><b>Criteria 2</b> .<br>If the criteria in Table B.5-1 is not met, compact<br>biofiltration BMP is not allowed. <b>Stop</b> .                                      |



Compact (high rate) Biofiltration BMP Checklist Provide basis for Criteria 1 and 3:

### Form I-10

### Feasibility Analysis:

Summarize findings and include either infiltration feasibility condition letter or Worksheet C.4-1: Form I-8A and Worksheet C.4-2: Form I-8B in the PDP SWQMP submittal.

### If Partial Infiltration Condition:

Provide documentation that target volume retention is met (include Worksheet B.5-2 in the PDP SWQMP submittal). Worksheet B.5-7 in Appendix B.5 can be used to estimate volume retention benefits from landscape areas.

### If No Infiltration Condition:

Provide documentation that the volume retention performance standard is met (include Worksheet B.5-2 in the PDP SWQMP submittal) in the PDP SWQMP submittal. Worksheet B.5-6 in Appendix B.5 can be used to document that the performance standard is met.

| Criteria                                                                                                                                                                                                                          | Answer                          | Progression                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Criteria 2:Is the compact biofiltration BMPsized to meet the performancestandard from the MS4 Permit?Refer to Appendix B.5 andAppendix B.5 andAppendix F.2 of the BMP DesignManual (Part 1 of Storm WaterStandards) for guidance. | Meets Flow<br>based Criteria    | Use guidance from Appendix F.2.2 to size the<br>compact biofiltration BMP to meet the flow<br>based criteria. Include the calculations in the PD<br>SWQMP.<br>Use parameters for sizing consistent wite<br>manufacturer guidelines and conditions of in<br>third party certifications (i.e. a BMP certified at<br>loading rate of 1 gpm/sq. ft. cannot be designed<br>using a loading rate of 1.5 gpm/sq. ft.)<br>Proceed to Criteria 4. |  |
|                                                                                                                                                                                                                                   | O Meets Volume based Criteria   | Provide documentation that the compact<br>biofiltration BMP has a total static (i.e. non-<br>routed) storage volume, including pore-spaces<br>and pre-filter detention volume (Refer to<br>Appendix B.5 for a schematic) of at least 0.75<br>times the portion of the DCV not reliably retained<br>onsite.<br><b>Proceed to Criteria 4.</b>                                                                                              |  |
|                                                                                                                                                                                                                                   | O Does not Meet either criteria | <b>Stop</b> . Compact biofiltration BMP is not allowed.                                                                                                                                                                                                                                                                                                                                                                                  |  |



### Compact (high rate) Biofiltration BMP Checklist

Form I-10

### Provide basis for Criteria 2:

Provide documentation that the BMP meets the numeric criteria and is designed consistent with the manufacturer guidelines and conditions of its third-party certification (i.e., loading rate, etc., as applicable).

| Criteria                                                                                                                                                                        |   | Answer                                             | Progression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u><b>Criteria 4:</b></u><br>Does the compact biofiltration<br>BMP meet the pollutant treatment<br>performance standard for the                                                 |   | Yes, meets the<br>TAPE<br>certification.           | Provide documentation that the compact BMP has an appropriate TAPE certification for the projects most significant pollutants of concern.<br><b>Proceed to Criteria 5.</b>                                                                                                                                                                                                                                                                                                                                             |
| projects most significant<br>pollutants of concern?<br>Refer to Appendix B.6 and<br>Appendix F.1 of the BMP Design<br>Manual (Part 1 of Storm Water<br>Standards) for guidance. | 0 | Yes, through<br>other third-party<br>documentation | Acceptance of third-party documentation is at<br>the discretion of the City Engineer. The City<br>engineer will consider, (a) the data submitted; (b)<br>representativeness of the data submitted; and (c)<br>consistency of the BMP performance claims with<br>pollutant control objectives in Table F.1-2 and<br>Table F.1-1 while making this determination. If a<br>compact biofiltration BMP is not accepted, a<br>written explanation/ reason will be provided in<br>Section 2.<br><b>Proceed to Criteria 5.</b> |
|                                                                                                                                                                                 | 0 | No                                                 | <b>Stop</b> . Compact biofiltration BMP is not allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Provide basis for Criteria 4:

Provide documentation that identifies the projects most significant pollutants of concern and TAPE certification or other third party documentation that shows that the compact biofiltration BMP meets the pollutant treatment performance standard for the projects most significant pollutants of concern.



| Compact (high rate) Biofiltration BMP Checklist Form I-10                                                                                                                |                          |                                              |                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Criteria                                                                                                                                                                 | Answer                   | Progression                                  |                                                                                                |  |  |
| <b><u>Criteria 5</u></b> :<br>Is the compact biofiltration BMP<br>designed to promote appropriate<br>biological activity to support and                                  | Yes                      | biofiltration BMP su                         | tion that the compact<br>pport appropriate biological<br>pendix F for guidance.<br><b>6.</b>   |  |  |
| maintain treatment process?<br>Refer to Appendix F of the BMP<br>Design Manual (Part 1 of Storm<br>Water Standards) for guidance.                                        | O No                     | <b>Stop</b> . Compact biofi                  | ltration BMP is not allowed.                                                                   |  |  |
| Provide basis for Criteria 5:<br>Provide documentation that appropriate biological activity is supported by the compact biofiltrat<br>BMP to maintain treatment process. |                          |                                              |                                                                                                |  |  |
| Criteria                                                                                                                                                                 | Answer                   | Pr                                           | ogression                                                                                      |  |  |
| <b><u>Criteria 6</u>:</b><br>Is the compact biofiltration BMP<br>designed with a hydraulic loading<br>rate to prevent erosion, scour and<br>channeling within the BMP?   | ∀ Yes                    | Provide documentat<br>biofiltration BMP is u | ion that the compact<br>used in a manner consistent<br>guidelines and conditions of<br>cation. |  |  |
|                                                                                                                                                                          | O No                     | <b>Stop</b> . Compact biofi                  | ltration BMP is not allowed.                                                                   |  |  |
| <b>Provide basis for Criteria 6:</b><br>Provide documentation that the<br>manufacturer guidelines and co<br>maximum inflow velocities, etc.,                             | nditions of its third-pa |                                              | -                                                                                              |  |  |



| Compact (high rate) Biofiltration BMP Checklist Form I-10                                                                                                                                                                   |   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Criteria                                                                                                                                                                                                                    |   | Answer                                                                                                    | Progression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| <b>Criteria 7:</b><br>Is the compact biofiltration BMP<br>maintenance plan consistent with<br>manufacturer guidelines and<br>conditions of its third-party<br>certification (i.e., maintenance<br>activities, frequencies)? | Ø | Yes, and the<br>compact BMP is<br>privately owned,<br>operated and<br>not in the public<br>right of way.  | Submit a maintenance agreement that will also<br>include a statement that the BMP will be<br>maintained in accordance with manufacturer<br>guidelines and conditions of third-party<br>certification.<br><b>Stop</b> . The compact biofiltration BMP meets the<br>required criteria.                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                                                                             | 0 | Yes, and the<br>BMP is either<br>owned or<br>operated by the<br>City or in the<br>public right of<br>way. | Approval is at the discretion of the City Engineer.<br>The city engineer will consider maintenance<br>requirements, cost of maintenance activities,<br>relevant previous local experience with<br>operation and maintenance of the BMP type,<br>ability to continue to operate the system in event<br>that the vending company is no longer operating<br>as a business or other relevant factors while<br>making the determination.<br><b>Stop</b> . Consult the City Engineer for a<br>determination. |  |  |  |
|                                                                                                                                                                                                                             | 0 | No                                                                                                        | <b>Stop</b> . Compact biofiltration BMP is not allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

### Provide basis for Criteria 7:

Include copy of manufacturer guidelines and conditions of third-party certification in the maintenance agreement. PDP SWQMP must include a statement that the compact BMP will be maintained in accordance with manufacturer guidelines and conditions of third-party certification.



| Compact (high rate) Biofiltration BMP Checklist Form I-1                                                             |   |                     |               |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---|---------------------|---------------|--|--|--|--|
| Section 2: Verification (For City Use Only)                                                                          |   |                     |               |  |  |  |  |
| Is the proposed compact BMP accepted by the City<br>Engineer for onsite pollutant control compliance for<br>the DMA? | 0 | Yes<br>No, See expl | anation below |  |  |  |  |
| Engineer for onsite pollutant control compliance for                                                                 |   |                     |               |  |  |  |  |
|                                                                                                                      |   |                     |               |  |  |  |  |



#### Response to Form I-10:

- 1. Biofiltration BMPs shall be allowed only as described in the BMP selection process in this manual (i.e., retention feasibility hierarchy).
  - a. The Modular Wetland System Linear (MWS Linear) is only being proposed on plans when retention via infiltration or reuse is proven infeasible. Conditions such as soils with little to no infiltration rate or sites in which insufficient landscaping warrant to successful implementation of reuse systems.
- 2. Biofiltration BMPs must be sized using acceptable sizing methods described in this manual.
  - a. Section B.5.2 Basis for Minimum Sizing Factor for Biofiltration BMPs states:

"The MS4 Permit describes conceptual performance goals for biofiltration BMPs and specifies numeric criteria for sizing biofiltration BMPs (See Section 2.2.1 of this Manual). However, the MS4 Permit does not define a specific footprint sizing factor or design profile that must be provided for the BMP to be considered "biofiltration."

"Additionally, it does not apply to alternative biofiltration designs that utilize the checklist in Appendix F (Biofiltration Standard and Checklist). Acceptable alternative designs (such as proprietary systems meeting Appendix F criteria) typically include design features intended to allow acceptable performance with a smaller footprint and have undergone field scale testing to evaluate performance and required O&M frequency."

As stated in the Manual alternative biofiltration designs are allowed. The MWS Linear therefore qualifies as a biofiltration BMP under this definition as it has both undergone field scale testing (TAPE tested and approved with a GULD) and provides requirements on O&M frequency. In addition, the manual allows for biofiltration BMPs to be sized in either volume based (DCV) or flow based design. The manual states in section F.2.2 Sizing of Flow-Based Biofiltration *BMPs:* 

"This sizing method is only available when the BMP meets the pollutant treatment performance standard in Appendix F.1."

"Proprietary biofiltration BMPs are typically designed as a flow-based BMPs (i.e., a constant treatment capacity with negligible storage volume). Additionally, proprietary biofiltration is only acceptable if no infiltration is feasible and where site-specific documentation demonstrates that the use of larger footprint biofiltration BMPs would be infeasible. The applicable sizing method for biofiltration is therefore reduced to: Treat 1.5 times the DCV."

"The following steps should be followed to demonstrate that the system is sized to treat 1.5 times the DCV."

1. Calculate the flow rate required to meet the pollutant treatment performance standard without scaling for the 1.5 factor. Options include either:

- Calculate the runoff flow rate from a 0.2 inch per hour uniform intensity precipitation event (See methodology Appendix B.6.3), or
- Conduct a continuous simulation analysis to compute the size required to capture and treat 80 percent of average annual runoff; for small catchments, 5-minute precipitation data should be used to account for short time of concentration. Nearest rain gage with 5-minute precipitation data is allowed for this analysis.

2. Multiply the flow rate from Step 1 by 1.5 to compute the design flow rate for the biofiltration system.

3. Based on the conditions of certification/verification (discussed above), establish the design capacity, as a flow rate, of a given sized unit.

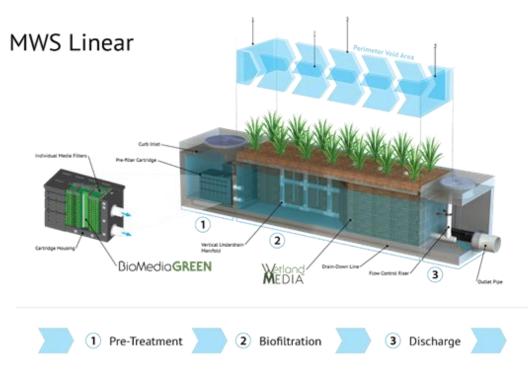
4. Demonstrates that an appropriate unit size and number of units is provided to provide a flow rate that meets the required flow rate from Step 2.

- 3. Biofiltration BMPs must be sited and designed to achieve maximum feasible infiltration and evapotranspiration.
  - a. The MWS Linear is utilized and placed in the same manner as other types of biofiltration systems. As with other biofiltration systems the MWS Linear includes and underdrain for the remaining portion of the DCV that is not retained via incidental infiltration (as biofiltration if infiltration is not feasible due to poor soils) and evapotranspiration. The MWS Linear can be design with an open bottom to maximize this incidental infiltration. The only exception to this, as with other biofiltration BMPs, is when the geotechnical consultant recommends an impervious liner be used due to specific soil conditions such as expansive clays. Additionally, the MWS Linear utilizes an amended media that is much more porous than the standard prescribed biofiltration media which is a mix of sand and compost. 100% of the media uses in the MWS Linear has interparticle voids of 48% plus and 24% internal void space for each media particle. This is much greater than the sand which has interparticle voids of 35% and internal voids of 0%. As such, the MWS Linear retains greater moisture which allows for greater volume retention and ultimately evapotranspiration via respiration of the contained vegetation.
- Biofiltration BMPs must be designed with a hydraulic loading rate to maximize pollutant retention, preserve pollutant control/sequestration processes, and minimize potential for pollutant washout.
  - a. The manual states:

"Alternatively, for proprietary designs and custom media mixes not meeting the media specifications contained in the City or County LID Manual, field scale testing data are provided to demonstrate that proposed media meets the pollutant treatment performance criteria in Section F.1 below."

The MWS Linear has been tested under the Washington State TAPE protocol which is full scale field testing and has received General Use Level Designation under that protocol. Table F.1-1, as shown below, requires a biofiltration BMP to have Basic Treatment, Phosphorus Treatment, and Enhanced Treatment under this protocol. The MWS Linear has GULD approval for all three and therefore meets this minimum requirement 4. A copy of the TAPE approval has been attached to this document.

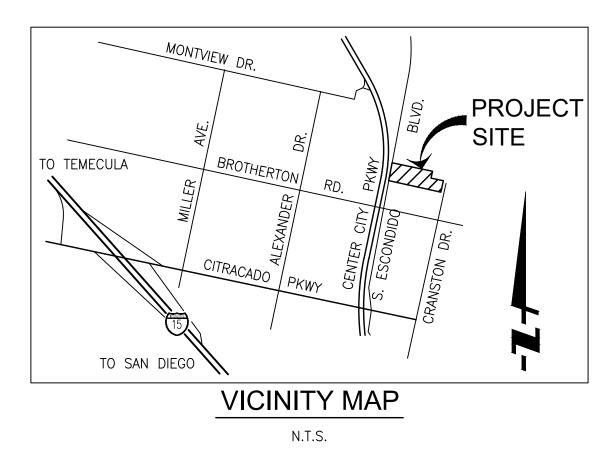
| Project Pollutant of Concern                                                                       | Required Technology Acceptance Protocol-<br>Ecology Certification for Biofiltration<br>Performance Standard          |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Trash                                                                                              | Basic Treatment, Phosphorus Treatment, Enhanced<br>Treatment                                                         |  |  |  |
| Sediments                                                                                          | Basic Treatment, Phosphorus Treatment, Enhanced<br>Treatment                                                         |  |  |  |
| Oil and Grease                                                                                     | Basic Treatment, Phosphorus Treatment, Enhanced<br>Treatment                                                         |  |  |  |
| Nutrients                                                                                          | Phosphorus Treatment <sup>1</sup>                                                                                    |  |  |  |
| Metals                                                                                             | Enhanced Treatment                                                                                                   |  |  |  |
| Pesticides                                                                                         | Basic Treatment (including filtration) <sup>2</sup> Phosphorus<br>Treatment, Enhanced Treatment                      |  |  |  |
| Organics                                                                                           | Basic Treatment (including filtration) <sup>2</sup> Phosphorus<br>Treatment, Enhanced Treatment                      |  |  |  |
| Bacteria and Viruses                                                                               | Basic Treatment (including bacteria removal<br>processes) <sup>3</sup> , Phosphorus Treatment, Enhanced<br>Treatment |  |  |  |
| Basic Treatment (including filtration) <sup>2</sup><br>Phosphorus Treatment, Enhanced<br>Treatment | Basic Treatment (including filtration) <sup>2</sup> Phosphorus<br>Treatment, Enhanced Treatment                      |  |  |  |


Table F.1-1: Required Technology Acceptance Protocol-Ecology Certifications for Polltuants of Concern for Biofiltration Performance Standard

- 5. Biofiltration BMPs must be designed to promote appropriate biological activity to support and maintain treatment processes.
  - a. The MWS Linear is an advanced vegetated biofiltration system that promotes biological processes found in both upland bioretention systems and wetlands. The system utilizes an advanced horizontal flow design to ensure maximum contact with the vegetation root mass. Bacterial growth, supported by the root system in the wetland chamber, performs a number of treatment processes. These vary as a function of moisture, temperature, pH, salinity, and pollutant concentrations. Biologically available forms of nitrogen, phosphorus, and carbon are actively taken into the cells of vegetation and bacteria, and used for metabolic processes (i.e., energy production and growth). Nitrogen and phosphorus are actively taken up as nutrients that are vital for a number of cell functions, growth, and energy production. These processes remove metabolites from the media during and between storm events, making the media available to capture more nutrients from subsequent storms.

- b. Soil organisms in the wetland chamber can break down a wide array of organic compounds into less toxic forms or completely break them down into carbon dioxide and water (Means and Hinchee 1994). Bacteria can also cause metals to precipitate out as salts, bind them within organic material, and accumulate metals in nodules within the cells. Finally, plant growth may metabolize many pollutants, sequester them or rendering them less toxic (Reeves and Baker 2000).
- c. The MWS is approved under TAPE protocol with and without plants meeting the minimum requirements set forth in the performance standard. The development of a schmutzdecke (a biological layer) within this subsurface application creates a diversity of microorganisms that meets the necessary requirement for biological activity.

| Biofiltration BMPs must be designed to p<br>support and maintain treatment processes                                                                                                            |                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intent: Biological processes are an important eleme                                                                                                                                             | ent of biofiltration performance and longevity.                                                                                                          |
| Plants have been selected to be tolerant of<br>project climate, design ponding depths and<br>the treatment media composition.                                                                   | Provide documentation justifying plant<br>selection. Refer to the plant list in Appendix<br>E.20.                                                        |
| Plants have been selected to minimize irrigation requirements.                                                                                                                                  | Provide documentation describing irrigation<br>requirements for establishment and long terr<br>operation.                                                |
| Plant location and growth will not impede<br>expected long-term media filtration rates and<br>will enhance long term infiltration rates to the<br>extent possible.                              | Provide documentation justifying plant<br>selection. Refer to the plant list in Appendix<br>E.20.                                                        |
| If plants are not part of the biofiltration<br>design, other biological processes are<br>supported as needed to sustain treatment<br>processes (e.g., biofilm in a subsurface flow<br>wetland). | For biofiltration designs without plants,<br>describe the biological processes that will<br>support effective treatment and how they wi<br>be sustained. |


- 6. Biofiltration BMPs must be designed to prevent erosion, scour, and channeling within the BMP.
  - a. The MWS Linear is a self-contained system with a pre-treatment chamber. Unlike other biofiltration BMPs erosion, scour, and channeling with in the BMP is not an issue. Following is a diagram of the BMP. The system pre-treatment chamber prevent any erosion or scour. The system downstream orifice control prevents channeling of the media:



- 7. Biofiltration BMP must include operations and maintenance design features and planning considerations to provide for continued effectiveness of pollutant and flow control functions.
  - a. The MWS Linear provides activation along with the first year of maintenance and inspection free on all installation in the county of San Diego. Unlike other biofiltration BMPs the City and Co-permitees can be assured the system is being properly installed and maintained. The first year of inspections is used the gauge the amount of loading in the system and this information is used to set appropriate maintenance interval for subsequent years. Attached to the document is a copy of the maintenance manual for the MWS Linear.

#### **Designed & Maintained Consistent with their Performance Certifications**

We are in agreement that all BMPs should be designed in a manner consistent with the TAPE certification. The MWS Linear is sized in accordance with the TAPE GULD approval which provides certification at a loading rate of 1 gpm/sq ft (100 in/hr) for Basic, Phosphorus and Enhanced treatment. In addition, as stated previously, Modular Wetland System, Inc. provide activation of all system installed in San Diego County along with the first year of inspections and maintenance to ensure appropriate function. As previously stated, a copy of the TAPE GULD approval is attached to support this claim.



### WQMP CALCULATIONS

### F.2.2 SIZING OF FLOW-BASED BIOFILTRATION BMP

### Worksheet B.6-1: Flow-Thru Design Flows

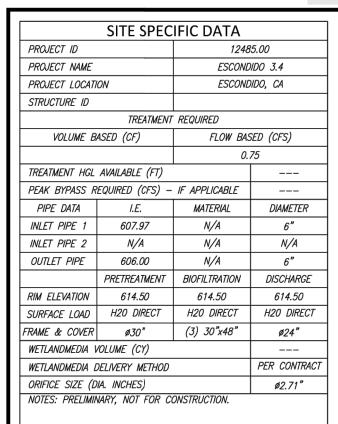
|   | Flow-thru Design Flows                                                | Worksheet B.6-1                       |       |            |
|---|-----------------------------------------------------------------------|---------------------------------------|-------|------------|
| 1 | DCV                                                                   | DCV                                   | 7,289 | cubic-feet |
| 2 | DCV retained                                                          | $\mathrm{DCV}_{\mathrm{retained}}$    | 0     | cubic-feet |
| 3 | DCV biofiltered                                                       | $\mathrm{DCV}_{\mathrm{biofiltered}}$ | 0     | cubic-feet |
| 4 | DCV requiring flow-thru<br>(Line $1 - \text{Line } 2 - 0.67$ *Line 3) | $\mathrm{DCV}_{\mathrm{flow-thrs}}$   | 7,289 | cubic-feet |
| 5 | Adjustment factor (Line 4 / Line 1)*                                  | AF=                                   | 1     | unitless   |
| 6 | Design rainfall intensity                                             | i=                                    | 0.20  | in/hr      |
| 7 | Area tributary to BMP (s)                                             | A=                                    | 3.26  | acres      |
| 8 | Area-weighted runoff factor (estimate using<br>Appendix B.2)          | C=                                    | 0.77  | unitless   |
| 9 | Calculate Flow Rate = $AF \times (C \times i \times A)$               | Q=                                    | 0.50  | cfs        |

### **REQUIRED TREATMENT FLOW RATE**

Q= 1.5 \* 0.5 CFS Q= 0.75 CFS

### **STORAGE FACILITY**

TREAT 1.5 x DCV

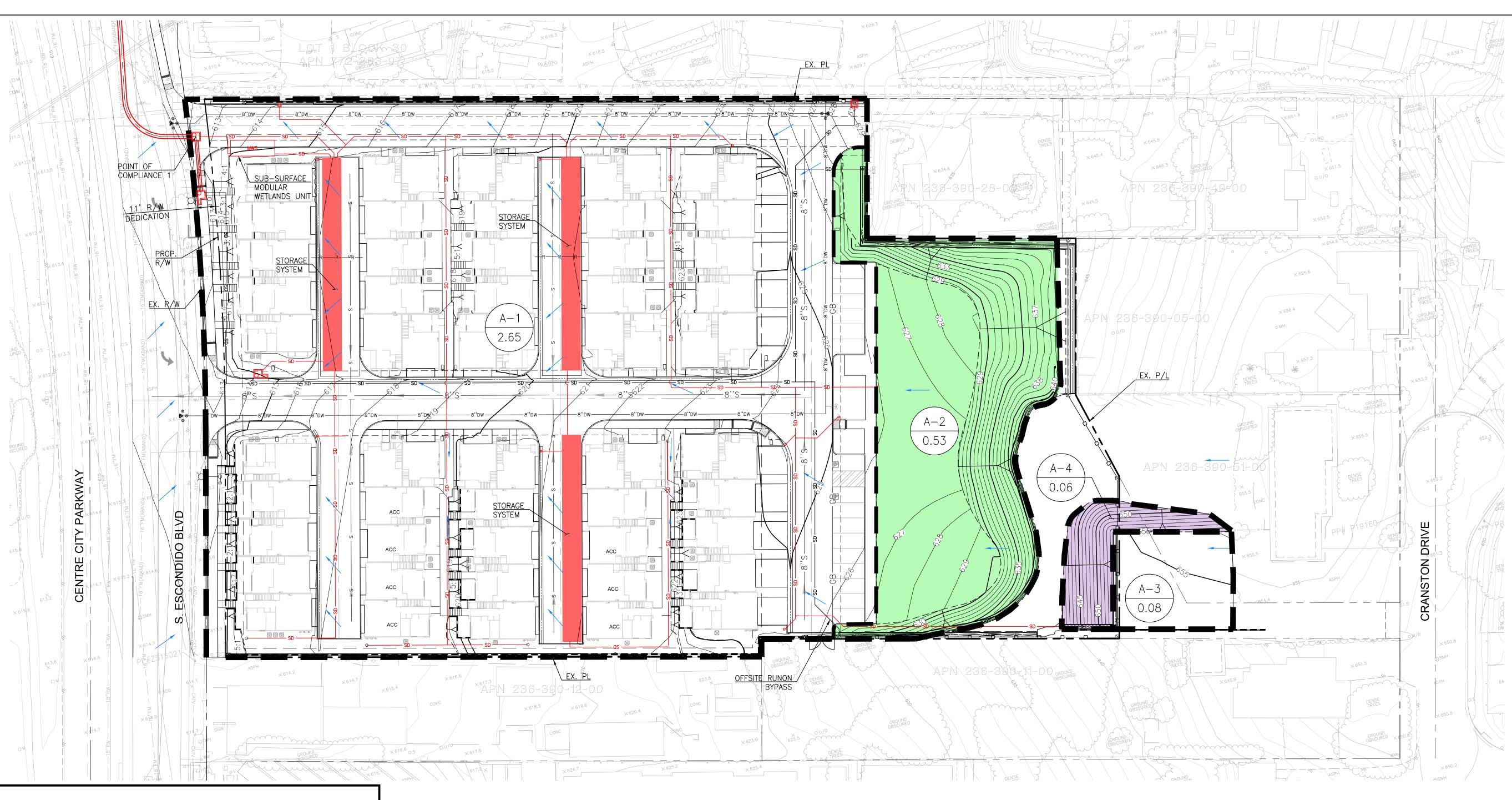

Storage Requirement = 1.5 \* 7289 CF = 10,934 CF

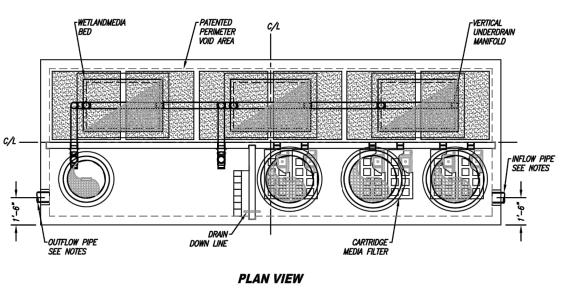
### WQ Storage Facility

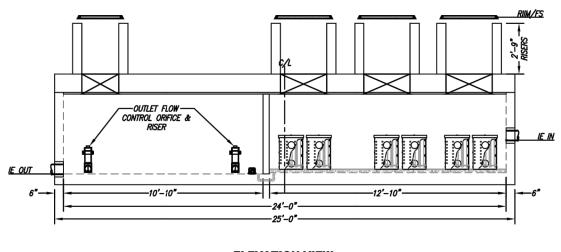
| ma storage racinty   |           |
|----------------------|-----------|
| # of Boxes           | 3         |
| WQ WSE               | 4.5 FT    |
| Width                | 10.5 FT   |
| Length               | 120 FT    |
| Porosity             | 89%       |
| Total Storage Volume | 15,139 CF |
|                      |           |
| STORAGE REQUIRED:    | 10,934 CF |
| STORAGE PROVIDED:    | 15,139 CF |
|                      |           |

#### BIOCLEAN MODULAR WETLANDS SYSTEM REQUIRED TREAMENT FLOWRATE 0.75 CFS MWS-L-8-24 PROPOSED TREATMENT FLOWRATE

0.75 CFS



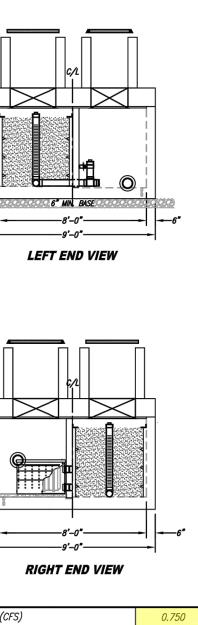


### INSTALLATION NOTES


- CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN
- MANUFACTURERS CONTRACT. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED
- BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL GAPS AROUND PIPES SHALL BE SEALED WATER TIGHT WITH A NON-SHRINK GROUT PER MANUFACTURERS STANDARD CONNECTION DETAIL AND SHALL MEET OR EXCEED REGIONAL PIPE CONNECTION STANDARDS.
- CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED
- OTHERWISE. DRIP OR SPRAY IRRIGATION REQUIRED ON ALL UNITS WITH VEGETATION.

GENERAL NOTES MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.

ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, V AND ACCESSORIES PLEASE CONTACT MANUFACTURER.



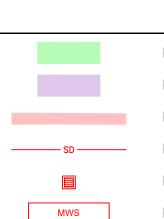








| 6"                  | <br> |
|---------------------|------|
| REATMENT FLOW (CFS) |      |


|            |                                                                                                    |                                                                                                                                                             |                    | OPERATING HEAD (FT)                   |
|------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|
|            |                                                                                                    |                                                                                                                                                             |                    | PRETREATMENT LOADING RATE (GPM/SF)    |
|            |                                                                                                    |                                                                                                                                                             |                    | WETLAND MEDIA LOADING RATE (GPM/SF,   |
| СТ ТО      | THE PRODUCT DESCRIBED MAY BE<br>PROTECTED BY ONE OR MORE OF<br>THE FOLLOWING US PATENTS:           | PROPRIETARY AND CONFIDENTIAL:<br>The information contained in this drawing is the sole                                                                      | Bio Clean          | MWS-L-8-24-4'-<br>STORMWATER BIOFILTR |
| s, weights | 7,425,262; 7,470,362; 7,674,378;<br>8,303,816; RELATED FOREIGN<br>PATENTS OR OTHER PATENTS PENDING | PROPERTY OF MODULAR WETLANDS SYSTEMS ANY<br>REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN<br>PERMISSION OF MODULAR WETLANDS SYSTEMS IS PROHIBITED. | A Forterra Company | STORIVIVATER BIOFILTR                 |
|            |                                                                                                    |                                                                                                                                                             |                    |                                       |



LEGEND



EXISTING PROPERTY LINE MAJOR DRAINAGE AREA BOUNDARY MINOR DRAINAGE AREA BOUNDARY DIRECTION OF SURFACE FLOW DRAINAGE AREA NAME



## SWQMP SUMMARY

|                                                                                                                                                  | Ŭ                      |                                |                             |                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|-----------------------------|-----------------|--|--|
| SITE ADDRESS: 2200 S. ESCO<br>PRIORITY DEVELOPMENT PRO<br>SITE TOTAL ACREAGE: 3.47± A<br>NRCS SOIL TYPE: C; 85-PERCE<br>APPROXIMATE DEPTH TO GRO |                        |                                |                             |                 |  |  |
| DMA                                                                                                                                              | A-1                    | A-2                            | A-3                         | A-4             |  |  |
| RUNOFF COEFFICIENT                                                                                                                               | 0.9                    | 0.1                            | 0.9                         |                 |  |  |
| AREA (AC)                                                                                                                                        | 2.65                   | 0.53                           | 0.08                        |                 |  |  |
| DESIGN CAPTURE VOLUME<br>(CF)                                                                                                                    | 6,926                  | 154                            | 209                         | SELF-MITIGATING |  |  |
| BMP TYPES                                                                                                                                        | MODULAR WETLAND UNIT M | WS-L-8-24 (BMP ID NO.1) & STOP | RAGE FACILITY (BMP ID NO.2) |                 |  |  |

TO TREAT 0.693cfs (STANDARD DETAIL), IT TAKES 6 PRE-TREATMENT CARTRIDGES AND A 1.0gpm/sf MEDIA LOADING RATE AT 3.4' HGL. TO PUSH 0.75cfs THROUGH THE SAME FOOTPRINT, PRE-TREATMENT CARTRIDGE NUMBER INCREASES TO 7 CARTRIDGES AND MEDIA LOADING RATE CHANGES TO 1.0gpm/sf AT 3.7' HGL. THIS MEANS THE VAULT BECOMES DEEPER THAN THE STANDARD VAULT TO GAIN ADDITIONAL MEDIA SURFACE AREA.

1.9 (SF) 1.0 4'-4"-V-UG TRATION SYSTEM DETAIL

3.7

NOTE:

PROPOSED LANDSCAPE


PROPOSED SELF-MITIGATING DMA

PROPOSED HYDROMODIFICATION STORAGE

PROPOSED STORM DRAIN

PROPOSED CATCH BASIN

PROPOSED MODULAR WETLANDS UNIT







X ENGINEERING & CONSULTING, INC. 6 Hutton Centre Drive, Suite 650 Santa Ana, California 92707

949.522.7100 | xengineeringinc.com



# Modular Wetlands<sup>®</sup> System Linear

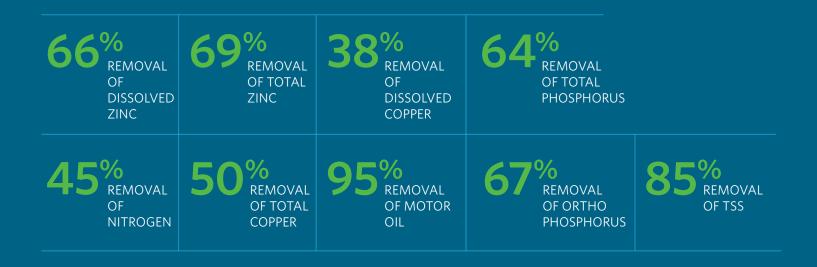
A Stormwater Biofiltration Solution



## **OVERVIEW**

The Bio Clean Modular Wetlands<sup>®</sup> System Linear represents a pioneering breakthrough in stormwater technology as the only biofiltration system to utilize patented horizontal flow, allowing for a smaller footprint, higher treatment capacity, and a wide range of versatility. While most biofilters use little or no pretreatment, the Modular Wetlands® incorporates an advanced pretreatment chamber that includes separation and pre-filter cartridges. In this chamber, sediment and hydrocarbons are removed from runoff before entering the biofiltration chamber, reducing maintenance costs and improving performance.

Horizontal flow also gives the system the unique ability to adapt to the environment through a variety of configurations, bypass orientations, and diversion applications.


### The Urban Impact

For hundreds of years, natural wetlands surrounding our shores have played an integral role as nature's stormwater treatment system. But as cities grow and develop, our environment's natural filtration systems are blanketed with impervious roads, rooftops, and parking lots.

Bio Clean understands this loss and has spent years re-establishing nature's presence in urban areas, and rejuvenating waterways with the Modular Wetlands<sup>®</sup> System Linear.

### PERFORMANCE

The Modular Wetlands<sup>®</sup> continues to outperform other treatment methods with superior pollutant removal for TSS, heavy metals, nutrients, hydrocarbons, and bacteria. Since 2007 the Modular Wetlands<sup>®</sup> has been field tested on numerous sites across the country and is proven to effectively remove pollutants through a combination of physical, chemical, and biological filtration processes. In fact, the Modular Wetlands<sup>®</sup> harnesses some of the same biological processes found in natural wetlands in order to collect, transform, and remove even the most harmful pollutants.



## **APPROVALS**

country.



## Washington State Department of Ecology TAPE Approved

The MWS Linear is approved for General Use Level Designation (GULD) for Basic, Enhanced, and Phosphorus treatment at 1 gpm/ft<sup>2</sup> loading rate. The highest performing BMP on the market for all main pollutant categories.



### **California Water Resources Control Board, Full Capture Certification**

The Modular Wetlands® System is the first biofiltration system to receive certification as a full capture trash treatment control device.

### Virginia Department of Environmental Quality, Assignment

The Virginia Department of Environmental Quality assigned the MWS Linear the highest phosphorus removal rating for manufactured treatment devices to meet the new Virginia Stormwater Management Program (VSMP) regulation technical criteria.



### **MASTEP Evaluation**

The University of Massachusetts at Amherst - Water Resources Research Center issued a technical evaluation report noting removal rates up to 84% TSS, 70% total phosphorus, 68.5% total zinc, and more.



Approved as an authorized BMP and noted to achieve the following minimum removal efficiencies: 85% TSS, 60% pathogens, 30% total phosphorus, and 30% total nitrogen.

### **ADVANTAGES**

- HORIZONTAL FLOW BIOFILTRATION
- GREATER FILTER SURFACE AREA
- PRETREATMENT CHAMBER
- PATENTED PERIMETER VOID AREA

### Maryland Department of the Environment, Approved ESD

Granted Environmental Site Design (ESD) status for new construction, redevelopment, and retrofitting when designed in accordance with the design manual.

### **Rhode Island Department of Environmental Management, Approved BMP**

- FLOW CONTROL
- NO DEPRESSED PLANTER AREA
- AUTO DRAINDOWN MEANS NO MOSQUITO VECTOR

## **OPERATION**

The Modular Wetlands<sup>®</sup> System Linear is the most efficient and versatile biofiltration system on the market, and it is the only system with horizontal flow which:

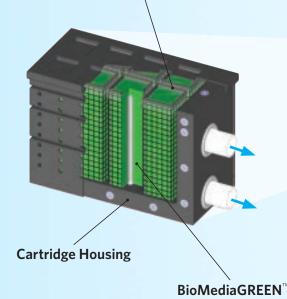
- Improves performance
- Reduces footprint
- Minimizes maintenance

Figure 1 & Figure 2 illustrate the invaluable benefits of horizontal flow and the multiple treatment stages.

## 1 PRETREATMENT

### **SEPARATION**

- Trash, sediment, and debris are separated before entering the pre-filter cartridges
- Designed for easy maintenance access


### **PRE-FILTER CARTRIDGES**

- Over 25 sq. ft. of surface area per cartridge
- Utilizes BioMediaGREEN<sup>™</sup> filter material
- Removes over 80% of TSS and 90% of hydrocarbons
  Prevents pollutants that cause clogging from migrating
- Prevents pollutants that cause clogging from migrating to the biofiltration chamber

Curb Inlet ~

Pre-filter Cartridge

### Individual Media Filters



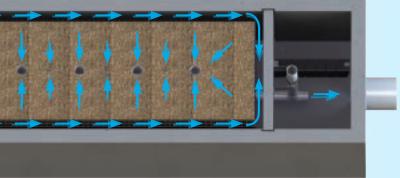
Vertical Underdrain / Manifold

1

WetlandMEDIA<sup>™</sup>

**Draindown Line** 

2


Flow Control Riser

3

Figure 2, Top View



PERIMETER VOID AREA



2x to 3x more surface area than traditional downward flow bioretention systems.

## **2** BIOFILTRATION

### HORIZONTAL FLOW

- Less clogging than downward flow biofilters
- Water flow is subsurface
- Improves biological filtration

### PATENTED PERIMETER VOID AREA

- Vertically extends void area between the walls and the WetlandMEDIA<sup>™</sup> on all four sides
- Maximizes surface area of the media for higher treatment capacity

### WETLANDMEDIA

- Contains no organics and removes phosphorus
- Greater surface area and 48% void space
- Maximum evapotranspiration
- High ion exchange capacity and lightweight

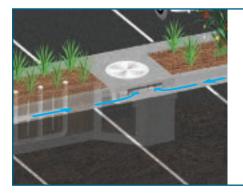
### Figure 1

**Outlet Pipe** 

### **3** DISCHARGE

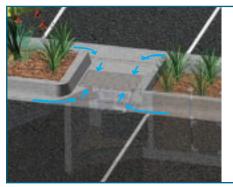
### **FLOW CONTROL**

- Orifice plate controls flow of water through WetlandMEDIA<sup>™</sup> to a level lower than the media's capacity
- Extends the life of the media and improves performance


### **DRAINDOWN FILTER**

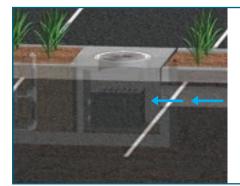
- The draindown is an optional feature that completely drains the pretreatment chamber
- Water that drains from the pretreatment chamber between storm events will be treated




## **CONFIGURATIONS**

The Modular Wetlands<sup>®</sup> System Linear is the preferred biofiltration system of civil engineers across the country due to its versatile design. This highly versatile system has available "pipe-in" options on most models, along with built-in curb or grated inlets for simple integration into your storm drain design.




### **CURB TYPE**

The Curb Type configuration accepts sheet flow through a curb opening and is commonly used along roadways and parking lots. It can be used in sump or flow-by conditions. Length of curb opening varies based on model and size.



### **GRATE TYPE**

The Grate Type configuration offers the same features and benefits as the Curb Type but with a grated/drop inlet above the systems pretreatment chamber. It has the added benefit of allowing pedestrian access over the inlet. ADA-compliant grates are available to assure easy and safe access. The Grate Type can also be used in scenarios where runoff needs to be intercepted on both sides of landscape islands.



### **VAULT TYPE**

The system's patented horizontal flow biofilter is able to accept inflow pipes directly into the pretreatment chamber, meaning the Modular Wetlands® can be used in end-of-the-line installations. This greatly improves feasibility over typical decentralized designs that are required with other biofiltration/ bioretention systems. Another benefit of the "pipe-in" design is the ability to install the system downstream of underground detention systems to meet water quality volume requirements.



### **DOWNSPOUT TYPE**

The Downspout Type is a variation of the Vault Type and is designed to accept a vertical downspout pipe from rooftop and podium areas. Some models have the option of utilizing an internal bypass, simplifying the overall design. The system can be installed as a raised planter, and the exterior can be stuccoed or covered with other finishes to match the look of adjacent buildings.

# **ORIENTATIONS**

### SIDE-BY-SIDE

The Side-By-Side orientation places the pretreatment and discharge chamber adjacent to one another with the biofiltration chamber running parallel on either side. This



minimizes the system length, providing a highly compact footprint. It has been proven useful in situations such as streets with directly adjacent sidewalks, as half of the system can be placed under that sidewalk. This orientation also offers internal bypass options as discussed below.

# **BYPASS**

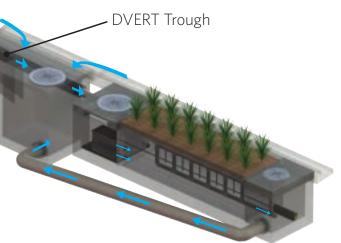
### **INTERNAL BYPASS WEIR** (SIDE-BY-SIDE ONLY)

The Side-By-Side orientation places the pretreatment and discharge chambers adjacent to one another allowing for integration of internal bypass. The wall between these chambers can act as a bypass weir when flows exceed the system's treatment capacity, thus allowing bypass from the pretreatment chamber directly to the discharge chamber.

### **EXTERNAL DIVERSION WEIR STRUCTURE**

This traditional offline diversion method can be used with the Modular Wetlands® in scenarios where runoff is being piped to the system. These simple and effective structures are generally configured with two outflow pipes. The first is a smaller pipe on the upstream side of the diversion weir - to divert low flows over to the Modular Wetlands<sup>®</sup> for treatment. The second is the main pipe that receives water once the system has exceeded treatment capacity and water flows over the weir.

### **FLOW-BY-DESIGN**


This method is one in which the system is placed just upstream of a standard curb or grate inlet to intercept the first flush. Higher flows simply pass by the Modular Wetlands® and into the standard inlet downstream.

### END-TO-END

The End-To-End orientation places the pretreatment and discharge chambers on opposite ends of the biofiltration chamber, therefore minimizing the width of the system to 5 ft. (outside dimension). This orientation is perfect for linear projects and street retrofits where existing utilities and sidewalks limit the amount of space available for installation. One limitation of this orientation is that bypass must be external.

### **DVERT LOW FLOW DIVERSION**

This simple yet innovative diversion trough can be installed in existing or new curb and grate inlets to divert the first flush to the Modular Wetlands® via pipe. It works similar to a rain gutter and is installed just below the opening into the inlet. It captures the low flows and channels them over



to a connecting pipe exiting out the wall of the inlet and leading to the MWS Linear. The DVERT is perfect for retrofit and green street applications that allow the Modular Wetlands<sup>®</sup> to be installed anywhere space is available.

## **SPECIFICATIONS**

### **FLOW-BASED DESIGNS**

The Modular Wetlands<sup>®</sup> System Linear can be used in stand-alone applications to meet treatment flow requirements. Since the Modular Wetlands<sup>®</sup> is the only biofiltration system that can accept inflow pipes several feet below the surface, it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

| MODEL #     | DIMENSIONS | WETLANDMEDIA<br>SURFACE AREA<br>(sq. ft.) | TREATMENT FLOW<br>RATE<br>(cfs) |
|-------------|------------|-------------------------------------------|---------------------------------|
| MWS-L-4-4   | 4' × 4'    | 23                                        | 0.052                           |
| MWS-L-4-6   | 4' x 6'    | 32                                        | 0.073                           |
| MWS-L-4-8   | 4' x 8'    | 50                                        | 0.115                           |
| MWS-L-4-13  | 4' x 13'   | 63                                        | 0.144                           |
| MWS-L-4-15  | 4' x 15'   | 76                                        | 0.175                           |
| MWS-L-4-17  | 4' x 17'   | 90                                        | 0.206                           |
| MWS-L-4-19  | 4' x 19'   | 103                                       | 0.237                           |
| MWS-L-4-21  | 4' x 21'   | 117                                       | 0.268                           |
| MWS-L-6-8   | 7′ x 9′    | 64                                        | 0.147                           |
| MWS-L-8-8   | 8' x 8'    | 100                                       | 0.230                           |
| MWS-L-8-12  | 8' x 12'   | 151                                       | 0.346                           |
| MWS-L-8-16  | 8' x 16'   | 201                                       | 0.462                           |
| MWS-L-8-20  | 9′ x 21′   | 252                                       | 0.577                           |
| MWS-L-8-24  | 9′ x 25′   | 302                                       | 0.693                           |
| MWS-L-10-20 | 10' x 20'  | 302                                       | 0.693                           |

\*See Custom MWS-L-8-24 Detail (0.75CFS Treatment Flowrate) on DMA Exhibit.

## **VOLUME-BASED DESIGNS** HORIZONTAL FLOW BIOFILTRATION ADVANTAGE



Box Culvert Prestorage

The Modular Wetlands<sup>®</sup> System Linear offers a unique advantage in the world of biofiltration due to its exclusive horizontal flow design: Volume-Based Design. No other biofilter has the ability to be placed downstream of detention ponds, extended dry detention basins, underground storage systems and permeable paver reservoirs. The systems horizontal flow configuration and built-in orifice control allows it to be installed with just 6" of fall between inlet and outlet pipe for a simple connection to projects with shallow downstream tiein points. In the example above, the Modular Wetlands<sup>®</sup> is installed downstream of underground box culvert storage. Designed for the water quality volume, the Modular Wetlands® will treat and discharge the required volume within local draindown time requirements.



### **DESIGN SUPPORT**

Bio Clean engineers are trained to provide you with superior support for all volume sizing configurations throughout the country. Our vast knowledge of state and local regulations allow us to quickly and efficiently size a system to maximize feasibility. Volume control and hydromodification regulations are expanding the need to decrease the cost and size of your biofiltration system. Bio Clean will help you realize these cost savings with the Modular Wetlands<sup>®</sup>, the only biofilter than can be used downstream of storage BMPs.

### **ADVANTAGES**

- LOWER COST THAN FLOW-BASED DESIGN
- MEETS LID REQUIREMENTS

 BUILT-IN ORIFICE CONTROL STRUCTURE WORKS WITH DEEP INSTALLATIONS

# **APPLICATIONS**

The Modular Wetlands® System Linear has been successfully used on numerous new construction and retrofit projects. The system's superior versatility makes it beneficial for a wide range of stormwater and waste water applications - treating rooftops, streetscapes, parking lots, and industrial sites.



#### **INDUSTRIAL**

Many states enforce strict regulations for discharges from industrial sites. The Modular Wetlands® has helped various sites meet difficult EPA-mandated effluent limits for dissolved metals and other pollutants.



### **STREETS**

Street applications can be challenging due to limited space. The Modular Wetlands<sup>®</sup> is very adaptable, and it offers the smallest footprint to work around the constraints of existing utilities on retrofit projects.



#### RESIDENTIAL

Low to high density developments can benefit from the versatile design of the Modular Wetlands<sup>®</sup>. The system can be used in both decentralized LID design and cost-effective end-of-the-line configurations.



#### **PARKING LOTS**

Parking lots are designed to maximize space and the Modular Wetlands'<sup>®</sup> 4 ft. standard planter width allows for easy integration into parking lot islands and other landscape medians.



### **COMMERCIAL**

Compared to bioretention systems, the Modular Wetlands<sup>®</sup> can treat far more area in less space, meeting treatment and volume control requirements.



### **MIXED USE**

The Modular Wetlands® can be installed as a raised planter to treat runoff from rooftops or patios, making it perfect for sustainable "live-work" spaces.

# **PLANT SELECTION**

Abundant plants, trees, and grasses bring value and an aesthetic benefit to any urban setting, but those in the Modular Wetlands® System Linear do even more - they increase pollutant removal. What's not seen, but very important, is that below grade, the stormwater runoff/flow is being subjected to nature's secret weapon: a dynamic physical, chemical, and biological process working to break down and remove non-point source pollutants. The flow rate is controlled in the Modular Wetlands<sup>®</sup>, giving the plants more contact time so that pollutants are more successfully decomposed, volatilized, and incorporated into the biomass of the Modular Wetlands'® micro/macro flora and fauna.

A wide range of plants are suitable for use in the Modular Wetlands®, but selections vary by location and climate. View suitable plants by visiting biocleanenvironmental.com/plants.

## **INSTALLATION**



The Modular Wetlands<sup>®</sup> is simple, easy to install, and has a space-efficient design that offers lower excavation and installation costs compared to traditional tree-box type systems. The structure of the system resembles precast catch basin or utility vaults and is installed in a similar fashion.

The system is delivered fully assembled for quick installation. Generally, the structure can be unloaded and set in place in 15 minutes. Our experienced team of field technicians is available to supervise installations and provide technical support.



## **MAINTENANCE**

Reduce your maintenance costs, man hours, and materials with the Modular Wetlands<sup>®</sup>. Unlike other biofiltration systems that provide no pretreatment, the Modular Wetlands® is a self-contained treatment train which incorporates simple and effective pretreatment.

Maintenance requirements for the biofilter itself are almost completely eliminated, as the pretreatment chamber removes and isolates trash, sediments, and hydrocarbons. What's left is the simple maintenance of an easily accessible pretreatment chamber that can be cleaned by hand or with a standard vac truck. Only periodic replacement of low-cost media in the pre-filter cartridges is required for long-term operation, and there is absolutely no need to replace expensive biofiltration media.



5796 Armada Drive Suite 250 Carlsbad, CA 92008 855.566.3938 stormwater@forterrabp.com biocleanenvironmental.com



### July 2017

## GENERAL USE LEVEL DESIGNATION FOR BASIC, ENHANCED, AND PHOSPHORUS TREATMENT

### For the

### **MWS-Linear Modular Wetland**

### **Ecology's Decision:**

Based on Modular Wetland Systems, Inc. application submissions, including the Technical Evaluation Report, dated April 1, 2014, Ecology hereby issues the following use level designation:

- 1. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Basic treatment
  - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 2. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Phosphorus treatment
  - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 3. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Enhanced treatment
  - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.

- 4. Ecology approves the MWS Linear Modular Wetland Stormwater Treatment System units for Basic, Phosphorus, and Enhanced treatment at the hydraulic loading rate listed above. Designers shall calculate the water quality design flow rates using the following procedures:
  - Western Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using the latest version of the Western Washington Hydrology Model or other Ecology-approved continuous runoff model.
  - Eastern Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using one of the three methods described in Chapter 2.2.5 of the Stormwater Management Manual for Eastern Washington (SWMMEW) or local manual.
  - Entire State: For treatment installed downstream of detention, the water quality design flow rate is the full 2-year release rate of the detention facility.
- 5. These use level designations have no expiration date but may be revoked or amended by Ecology, and are subject to the conditions specified below.

### **Ecology's Conditions of Use:**

Applicants shall comply with the following conditions:

- 1. Design, assemble, install, operate, and maintain the MWS Linear Modular Wetland Stormwater Treatment System units, in accordance with Modular Wetland Systems, Inc. applicable manuals and documents and the Ecology Decision.
- Each site plan must undergo Modular Wetland Systems, Inc. review and approval before site installation. This ensures that site grading and slope are appropriate for use of a MWS – Linear Modular Wetland Stormwater Treatment System unit.
- 3. MWS Linear Modular Wetland Stormwater Treatment System media shall conform to the specifications submitted to, and approved by, Ecology.
- 4. The applicant tested the MWS Linear Modular Wetland Stormwater Treatment System with an external bypass weir. This weir limited the depth of water flowing through the media, and therefore the active treatment area, to below the root zone of the plants. This GULD applies to MWS Linear Modular Wetland Stormwater Treatment Systems whether plants are included in the final product or not.
- 5. Maintenance: The required maintenance interval for stormwater treatment devices is often dependent upon the degree of pollutant loading from a particular drainage basin. Therefore, Ecology does not endorse or recommend a "one size fits all" maintenance cycle for a particular model/size of manufactured filter treatment device.
  - Typically, Modular Wetland Systems, Inc. designs MWS Linear Modular Wetland systems for a target prefilter media life of 6 to 12 months.
  - Indications of the need for maintenance include effluent flow decreasing to below the design flow rate or decrease in treatment below required levels.
  - Owners/operators must inspect MWS Linear Modular Wetland systems for a minimum of twelve months from the start of post-construction operation to determine site-specific

maintenance schedules and requirements. You must conduct inspections monthly during the wet season, and every other month during the dry season. (According to the SWMMWW, the wet season in western Washington is October 1 to April 30. According to SWMMEW, the wet season in eastern Washington is October 1 to June 30). After the first year of operation, owners/operators must conduct inspections based on the findings during the first year of inspections.

- Conduct inspections by qualified personnel, follow manufacturer's guidelines, and use methods capable of determining either a decrease in treated effluent flowrate and/or a decrease in pollutant removal ability.
- When inspections are performed, the following findings typically serve as maintenance triggers:
  - Standing water remains in the vault between rain events, or
  - Bypass occurs during storms smaller than the design storm.
  - If excessive floatables (trash and debris) are present (but no standing water or excessive sedimentation), perform a minor maintenance consisting of gross solids removal, not prefilter media replacement.
  - Additional data collection will be used to create a correlation between pretreatment chamber sediment depth and pre-filter clogging (see *Issues to be Addressed by the Company* section below)
- 6. Discharges from the MWS Linear Modular Wetland Stormwater Treatment System units shall not cause or contribute to water quality standards violations in receiving waters.

| Applicant:           | Modular Wetland Systems, Inc. |
|----------------------|-------------------------------|
| Applicant's Address: | PO. Box 869                   |
|                      | Oceanside, CA 92054           |

#### **Application Documents:**

- Original Application for Conditional Use Level Designation, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., January 2011
- *Quality Assurance Project Plan*: Modular Wetland system Linear Treatment System performance Monitoring Project, draft, January 2011.
- *Revised Application for Conditional Use Level Designation*, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., May 2011
- Memorandum: Modular Wetland System-Linear GULD Application Supplementary Data, April 2014
- Technical Evaluation Report: Modular Wetland System Stormwater Treatment System Performance Monitoring, April 2014.

### **Applicant's Use Level Request:**

General use level designation as a Basic, Enhanced, and Phosphorus treatment device in accordance with Ecology's Guidance for Evaluating Emerging Stormwater Treatment Technologies Technology Assessment Protocol – Ecology (TAPE) January 2011 Revision.

### **Applicant's Performance Claims:**

- The MWS Linear Modular wetland is capable of removing a minimum of 80-percent of TSS from stormwater with influent concentrations between 100 and 200 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 50-percent of Total Phosphorus from stormwater with influent concentrations between 0.1 and 0.5 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 30-percent of dissolved Copper from stormwater with influent concentrations between 0.005 and 0.020 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 60-percent of dissolved Zinc from stormwater with influent concentrations between 0.02 and 0.30 mg/l.

### **Ecology Recommendations:**

• Modular Wetland Systems, Inc. has shown Ecology, through laboratory and fieldtesting, that the MWS - Linear Modular Wetland Stormwater Treatment System filter system is capable of attaining Ecology's Basic, Total phosphorus, and Enhanced treatment goals.

### **Findings of Fact:**

### Laboratory Testing

The MWS-Linear Modular wetland has the:

- Capability to remove 99 percent of total suspended solids (using Sil-Co-Sil 106) in a quarter-scale model with influent concentrations of 270 mg/L.
- Capability to remove 91 percent of total suspended solids (using Sil-Co-Sil 106) in laboratory conditions with influent concentrations of 84.6 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 93 percent of dissolved Copper in a quarter-scale model with influent concentrations of 0.757 mg/L.
- Capability to remove 79 percent of dissolved Copper in laboratory conditions with influent concentrations of 0.567 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 80.5-percent of dissolved Zinc in a quarter-scale model with influent concentrations of 0.95 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 78-percent of dissolved Zinc in laboratory conditions with influent concentrations of 0.75 mg/L at a flow rate of 3.0 gpm per square foot of media.

### Field Testing

- Modular Wetland Systems, Inc. conducted monitoring of an MWS-Linear (Model # MWS-L-4-13) from April 2012 through May 2013, at a transportation maintenance facility in Portland, Oregon. The manufacturer collected flow-weighted composite samples of the system's influent and effluent during 28 separate storm events. The system treated approximately 75 percent of the runoff from 53.5 inches of rainfall during the monitoring period. The applicant sized the system at 1 gpm/sq ft. (wetland media) and 3gpm/sq ft. (prefilter).
- Influent TSS concentrations for qualifying sampled storm events ranged from 20 to 339 mg/L. Average TSS removal for influent concentrations greater than 100 mg/L (n=7) averaged 85 percent. For influent concentrations in the range of 20-100 mg/L (n=18), the upper 95 percent confidence interval about the mean effluent concentration was 12.8 mg/L.
- Total phosphorus removal for 17 events with influent TP concentrations in the range of 0.1 to 0.5 mg/L averaged 65 percent. A bootstrap estimate of the lower 95 percent confidence limit (LCL95) of the mean total phosphorus reduction was 58 percent.
- The lower 95 percent confidence limit of the mean percent removal was 60.5 percent for dissolved zinc for influent concentrations in the range of 0.02 to 0.3 mg/L (n=11). The lower 95 percent confidence limit of the mean percent removal was 32.5 percent for dissolved copper for influent concentrations in the range of 0.005 to 0.02 mg/L (n=14) at flow rates up to 28 gpm (design flow rate 41 gpm). Laboratory test data augmented the data set, showing dissolved copper removal at the design flow rate of 41 gpm (93 percent reduction in influent dissolved copper of 0.757 mg/L).

#### Issues to be addressed by the Company:

- 1. Modular Wetland Systems, Inc. should collect maintenance and inspection data for the first year on all installations in the Northwest in order to assess standard maintenance requirements for various land uses in the region. Modular Wetland Systems, Inc. should use these data to establish required maintenance cycles.
- 2. Modular Wetland Systems, Inc. should collect pre-treatment chamber sediment depth data for the first year of operation for all installations in the Northwest. Modular Wetland Systems, Inc. will use these data to create a correlation between sediment depth and pre-filter clogging.

### **Technology Description**:

Download at http://www.modularwetlands.com/

**Contact Information**:

Applicant:

Zach Kent BioClean A Forterra Company. 398 Vi9a El Centro Oceanside, CA 92058 <u>zach.kent@forterrabp.com</u> Applicant website: <u>http://www.modularwetlands.com/</u>

Ecology web link: <u>http://www.ecy.wa.gov/programs/wg/stormwater/newtech/index.html</u>

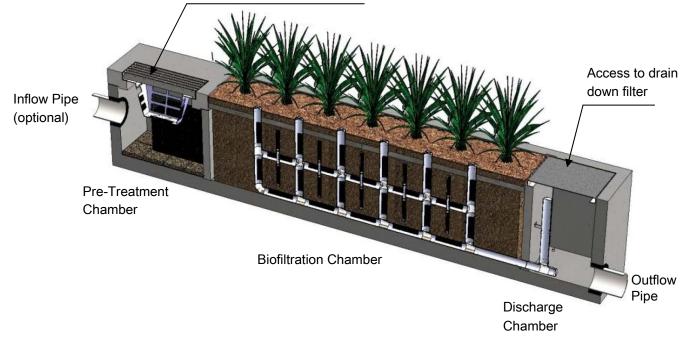
Ecology:

| Douglas C. Howie, P.E.   |
|--------------------------|
| Department of Ecology    |
| Water Quality Program    |
| (360) 407-6444           |
| douglas.howie@ecy.wa.gov |

### **Revision History**

| Date           | Revision                                                                                                                                         |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| June 2011      | Original use-level-designation document                                                                                                          |  |
| September 2012 | Revised dates for TER and expiration                                                                                                             |  |
| January 2013   | Modified Design Storm Description, added Revision Table, added<br>maintenance discussion, modified format in accordance with Ecology<br>standard |  |
| December 2013  | Updated name of Applicant                                                                                                                        |  |
| April 2014     | Approved GULD designation for Basic, Phosphorus, and Enhanced treatment                                                                          |  |
| December 2015  | Updated GULD to document the acceptance of MWS-Linear<br>Modular Wetland installations with or without the inclusion of plants                   |  |
| July 2017      | Revised Manufacturer Contact Information (name, address, and email)                                                                              |  |




### Maintenance Guidelines for Modular Wetland System - Linear

### Maintenance Summary

- o Remove Trash from Screening Device average maintenance interval is 6 to 12 months.
  - (5 minute average service time).
- Remove Sediment from Separation Chamber average maintenance interval is 12 to 24 months.
  - (10 minute average service time).
- o Replace Cartridge Filter Media average maintenance interval 12 to 24 months.
  - (10-15 minute per cartridge average service time).
- o Replace Drain Down Filter Media average maintenance interval is 12 to 24 months.
  - (5 minute average service time).
- o Trim Vegetation average maintenance interval is 6 to 12 months.
  - (Service time varies).

### System Diagram

Access to screening device, separation chamber and cartridge filter



www.modularwetlands.com



### Maintenance Procedures

### Screening Device

- 1. Remove grate or manhole cover to gain access to the screening device in the Pre-Treatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
- 2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
- 3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

### Separation Chamber

- 1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
- 2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
- 3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

### Cartridge Filters

- 1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
- 2. Enter separation chamber.
- 3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
- 4. Remove each of 4 to 8 media cages holding the media in place.
- 5. Spray down the cartridge filter to remove any accumulated pollutants.
- 6. Vacuum out old media and accumulated pollutants.
- 7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
- 8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

### Drain Down Filter

- 1. Remove hatch or manhole cover over discharge chamber and enter chamber.
- 2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
- 3. Exit chamber and replace hatch or manhole cover.

### www.modularwetlands.com



# Maintenance Notes

- 1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
- 2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
- 3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- 4. Entry into chambers may require confined space training based on state and local regulations.
- 5. No fertilizer shall be used in the Biofiltration Chamber.
- 6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.



# **Maintenance Procedure Illustration**

#### **Screening Device**

The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.



#### Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.









# Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.







#### Drain Down Filter

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.





#### **Trim Vegetation**

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.











# **Inspection Form**



Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com





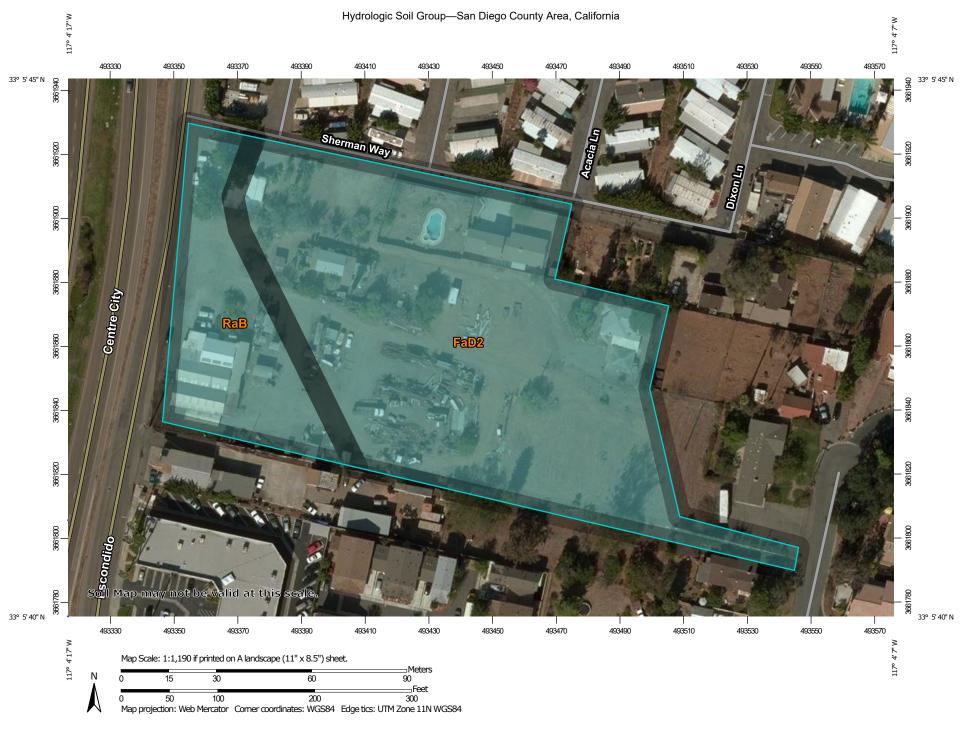
| Project Name                                                                                                                                                                                                                       |                  |                |                |             |                 |             |         |               |              | For Office Use On                            | ly      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------|-------------|-----------------|-------------|---------|---------------|--------------|----------------------------------------------|---------|
| Project Address                                                                                                                                                                                                                    |                  |                |                |             |                 |             |         | (Reviewed By) |              |                                              |         |
| Owner / Management Company                                                                                                                                                                                                         |                  |                |                |             |                 |             |         |               |              |                                              |         |
| Contact                                                                                                                                                                                                                            |                  |                |                |             | Phone (         | )           | _       |               |              | (Date)<br>Office personnel to co<br>the left |         |
| Inspector Name                                                                                                                                                                                                                     |                  |                |                |             | Date            | /           | /       |               | Time         | e                                            | AM / PM |
| Type of Inspection   Routin                                                                                                                                                                                                        | ie 🗌 Fo          | ollow Up       |                | aint        | Storm           |             | St      | orm Event i   | n Last 72-ho | ours? 🗌 No 🗌 N                               | /es     |
| Weather Condition                                                                                                                                                                                                                  |                  |                |                |             | Additional N    | otes        |         |               |              |                                              |         |
|                                                                                                                                                                                                                                    |                  |                | l              | nspect      | ion Chec        | dist        |         |               |              |                                              |         |
| Modular Wetland System T                                                                                                                                                                                                           | ype (Curb,       | Grate or L     | IG Vault):     |             |                 | Siz         | ze (22  | 2', 14' or e  | etc.):       |                                              |         |
| Structural Integrity:                                                                                                                                                                                                              |                  |                |                |             |                 |             |         | Yes           | No           | Comme                                        | nts     |
| Damage to pre-treatment access cover (manhole cover/grate) or cannot be opened using normal lifting pressure?<br>Damage to discharge chamber access cover (manhole cover/grate) or cannot be opened using normal lifting pressure? |                  |                |                |             |                 | ing         |         |               |              |                                              |         |
| Does the MWS unit show signs o                                                                                                                                                                                                     | of structural of | deterioration  | (cracks in the | e wall, dan | nage to frame)  | ?           |         |               |              |                                              |         |
| Is the inlet/outlet pipe or drain do                                                                                                                                                                                               | wn pipe dam      | aged or othe   | erwise not fun | ctioning p  | roperly?        |             |         |               |              |                                              |         |
| Working Condition:                                                                                                                                                                                                                 |                  |                |                |             |                 |             |         |               |              |                                              |         |
| Is there evidence of illicit discharg                                                                                                                                                                                              | ge or excessi    | ve oil, greas  | e, or other au | itomobile f | fluids entering | and clogg   | ing the |               |              |                                              |         |
| Is there standing water in inappro                                                                                                                                                                                                 | opriate areas    | after a dry p  | eriod?         |             |                 |             |         |               |              |                                              |         |
| Is the filter insert (if applicable) at                                                                                                                                                                                            | t capacity and   | d/or is there  | an accumulat   | ion of deb  | ris/trash on th | e shelf sys | stem?   |               |              |                                              |         |
| Does the depth of sediment/trash<br>specify which one in the commer                                                                                                                                                                |                  |                |                |             |                 |             | lf yes, |               |              |                                              | Depth:  |
| Does the cartridge filter media ne                                                                                                                                                                                                 | ed replacem      | ent in pre-tre | eatment cham   | nber and/o  | r discharge ch  | amber?      |         |               |              | Chamber:                                     |         |
| Any signs of improper functioning                                                                                                                                                                                                  | g in the disch   | arge chambe    | er? Note issu  | ies in com  | ments section   |             |         |               |              |                                              |         |
| Other Inspection Items:                                                                                                                                                                                                            |                  |                |                |             |                 |             |         |               |              |                                              |         |
| Is there an accumulation of sedin                                                                                                                                                                                                  | nent/trash/de    | bris in the w  | etland media   | (if applica | ble)?           |             |         |               |              |                                              |         |
| Is it evident that the plants are ali                                                                                                                                                                                              | ive and healt    | hy (if applica | ble)? Please   | note Plant  | t Information b | elow.       |         |               |              |                                              |         |
| Is there a septic or foul odor coming from inside the system?                                                                                                                                                                      |                  |                |                |             |                 |             |         |               |              |                                              |         |
| Waste:                                                                                                                                                                                                                             | Yes              | No             |                | R           | ecommend        | ed Main     | tenar   | nce           |              | Plant Inform                                 | nation  |
| Sediment / Silt / Clay                                                                                                                                                                                                             |                  |                |                | No Clean    | ing Needed      |             |         |               |              | Damage to Plants                             |         |
| Trash / Bags / Bottles                                                                                                                                                                                                             |                  |                |                | Schedule    | Maintenance     | as Planne   | ed      |               |              | Plant Replacement                            |         |
| Green Waste / Leaves / Foliage                                                                                                                                                                                                     |                  |                |                | Needs Im    | imediate Main   | enance      |         |               |              | Plant Trimming                               |         |

Additional Notes:

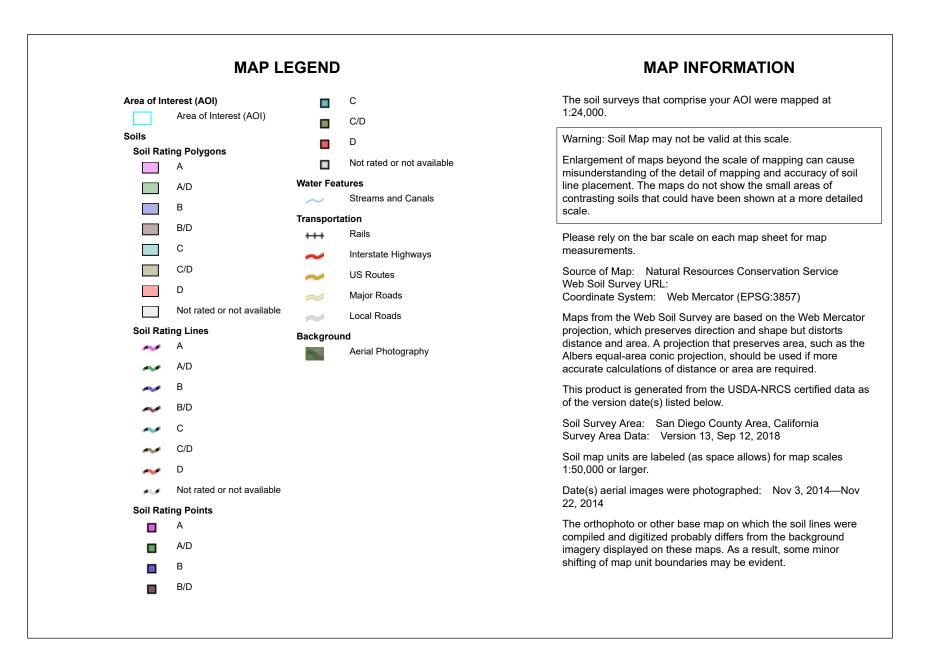


# **Maintenance Report**




Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com




# Cleaning and Maintenance Report Modular Wetlands System



| Project N     | ame                          |                                        |                       |                         |                          |                              | For Of                                                           | fice Use Only                                                        |
|---------------|------------------------------|----------------------------------------|-----------------------|-------------------------|--------------------------|------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|
| Project A     | ddress                       |                                        |                       |                         | (city)                   | (Zip Code)                   | (Review                                                          | ed By)                                                               |
| Owner / I     | Management Company           |                                        |                       |                         |                          |                              | (Date)                                                           |                                                                      |
| Contact       |                              |                                        |                       | Phone (                 | )                        | -                            | Office                                                           | bersonnel to complete section to the left.                           |
| Inspector     | Name                         |                                        |                       | Date                    | /                        | /                            | Time                                                             | AM / PM                                                              |
| Type of I     | nspection 🗌 Routir           | e 🗌 Follow Up                          | Complaint             | Storm                   |                          | Storm Event in               | Last 72-hours?                                                   | No 🗌 Yes                                                             |
| Weather       | Condition                    |                                        |                       | Additiona               | al Notes                 |                              |                                                                  |                                                                      |
| Site<br>Map # | GPS Coordinates<br>of Insert | Manufacturer /<br>Description / Sizing | Trash<br>Accumulation | Foliage<br>Accumulation | Sediment<br>Accumulation | Total Debris<br>Accumulation | Condition of Media<br>25/50/75/100<br>(will be changed<br>@ 75%) | Operational Per<br>Manufactures'<br>Specifications<br>(If not, why?) |
|               | Lat:<br>Long:                | MWS<br>Catch Basins                    |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              | MWS<br>Sedimentation<br>Basin          |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              | Media Filter<br>Condition              |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              | Plant Condition                        |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              | Drain Down Media<br>Condition          |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              | Discharge Chamber<br>Condition         |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              | Drain Down Pipe<br>Condition           |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              | Inlet and Outlet<br>Pipe Condition     |                       |                         |                          |                              |                                                                  |                                                                      |
| Commen        | ts:                          |                                        |                       |                         |                          |                              |                                                                  |                                                                      |
|               |                              |                                        |                       |                         |                          |                              |                                                                  |                                                                      |



USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey



# Hydrologic Soil Group

|                           | -                                                          |        |              |                |
|---------------------------|------------------------------------------------------------|--------|--------------|----------------|
| Map unit symbol           | Map unit name                                              | Rating | Acres in AOI | Percent of AOI |
| FaD2                      | Fallbrook sandy loam, 9<br>to 15 percent slopes,<br>eroded | С      | 2.8          | 78.2%          |
| RaB                       | Ramona sandy loam, 2<br>to 5 percent slopes                | С      | 0.8          | 21.8%          |
| Totals for Area of Intere | est                                                        | 3.6    | 100.0%       |                |

# Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

# **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher



# San Diego County 85th Percentile Isopluvials

BUENA VISTA LA

AQUA HEDIONDA LA

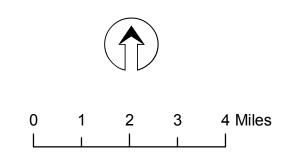
**BATIQUITOS LAGOO**N

SAN ELIJO LAGOON

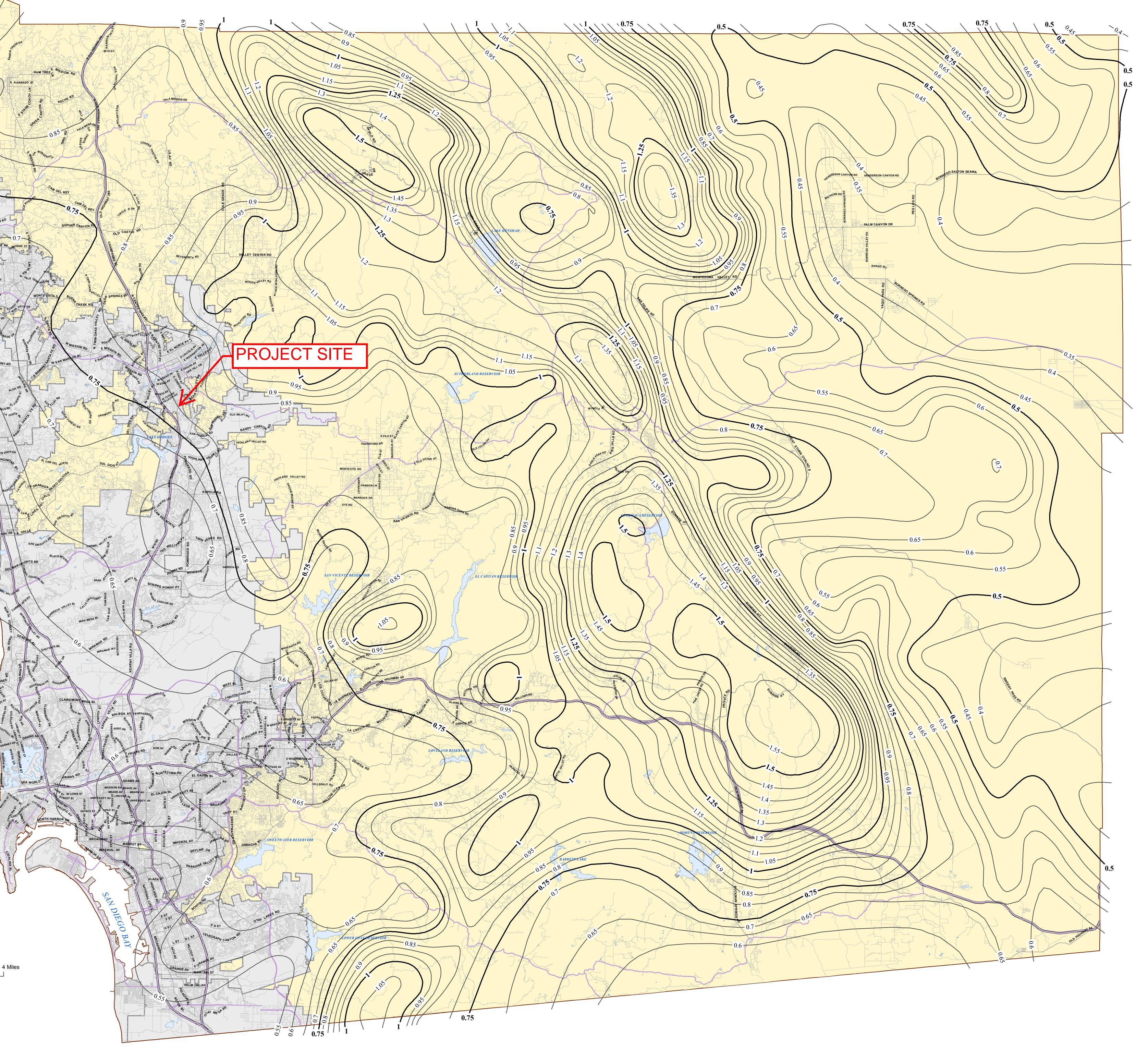
SAN DIE GUITO LAGOON

LOS PENASQUITOS LAGOON

85th Percentile Rainfall in Inches


- Freeway
- Highway
- Major Road
- Street
- C Municipal Boundary
- Water Body

# Note:


The 85th percentile is a 24-hour rainfall total. It represents a value such that 85% of the observed 24-hour rainfall totals will be less than that value.



THIS MAP/DATA IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Note: This product may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG. This product may contain information reproduced with permission granted by RAND MCNALLY & COMPANY® to SanGIS. This map is copyrighted by RAND MCNALLY & COMPANY®. It is unlawful to copy or reproduce all or any part threeof, whether for personal use or resale, without the print, mritten permission of RAND MCNALLY & COMPANY®. Copyright 2011 Eagle Aerial Imaging, all rights reserved. Copyright SanGIS 2011 - All Rights Reserved. Full text of this legal notice can be found at: http://www.sangis.org/Legal\_Notice.htm Projection: State Plane, Zone VI, Datum NAD 83. Units Feet. O/iFLOOD\_CONTROL\86th\_Percentile\_Iso9b1th\_Percentile\_Iso9Lvials\_36x48.mxd County of San Diego, LUEG GIS, 11/30/11



MISSION BAY



This page was left intentionally blank.

# **ATTACHMENT 2**

# BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

□Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

| Attachment<br>Sequence | Contents                                                                                                                                                                                         | Checklist                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attachment 2a          | Flow Control Facility Design,<br>including Structural BMP Drawdown<br>Calculations and Overflow Design<br>Summary (Required)<br>See Chapter 6 and Appendix G of<br>the Storm Water Design Manual | <ul> <li>☑ Included</li> <li>☑ Submitted as separate stand-<br/>alone document</li> </ul>                                                                                                                                                                                                                                                                                     |
| Attachment 2b          | Hydromodification Management<br>Exhibit (Required)                                                                                                                                               | ☑Included See Hydromodification Management<br>Exhibit Checklist on the back of this<br>Attachment cover sheet.                                                                                                                                                                                                                                                                |
| Attachment 2c          | Management of Critical Coarse<br>Sediment Yield Areas<br>See Section 6.2 and Appendix H of<br>the Storm Water Design Manual.                                                                     | <ul> <li>Exhibit depicting onsite and/or<br/>upstream sources of critical<br/>coarse sediment as mapped in<br/>the WMAA AND,</li> <li>Demonstration that the project<br/>effectively avoids and bypasses<br/>sources of mapped critical coarse<br/>sediment OR,</li> <li>Demonstration that project does<br/>not generate a net impact on the<br/>receiving water.</li> </ul> |
| Attachment 2d          | Geomorphic Assessment of<br>Receiving Channels (Optional)<br>See Section 6.3.4 of the Storm<br>Water Design Manual.                                                                              | <ul> <li>Not performed</li> <li>Included</li> <li>Submitted as separate stand-<br/>alone document</li> </ul>                                                                                                                                                                                                                                                                  |
| Attachment 2e          | Vector Control Plan (Required when<br>structural BMPs will not drain in 96<br>hours)                                                                                                             | <ul> <li>□Included</li> <li>Not required because BMPs will drain in less than 96 hours</li> </ul>                                                                                                                                                                                                                                                                             |

#### Indicate which Items are Included behind this cover sheet:

# TENTATIVE SUBDIVISION MAP SUB20-0006 Escondido, CA

# PRELIMINARY HYDROMODIFICATION REPORT

PREPARED FOR: Warmington Residential California, Inc. 3090 Pullman Street, Costa Mesa, CA 92626 714.557.5511 Date Prepared: September 2020

PREPARED BY: X Engineering & Consulting, Inc. 6 Hutton Centre Drive, Suite 650 Santa Ana, California 92707 949.522.7100 Project Manager: Eric Lissner, P.E. Project Number: 101-003



Escondido, CA

This report was prepared by or under the supervision of the undersigned registered civil engineer who attests to the technical information contained herein. The registered civil engineer has also judged the qualifications of any technical specialists providing engineering data upon which recommendations, conclusions, and decisions are based.



E.R.J.

Eric Lissner, P.E.

02-16-2021

Date

# TABLE OF CONTENTS

| I.   | INTRO  | DDUCTION                                 | .4 |
|------|--------|------------------------------------------|----|
|      | Α.     | PROJECT SITE DESCRIPTION                 | .4 |
|      | В.     | PURPOSE AND SCOPE                        | .4 |
| II.  | EXISTI | NG TOPOGRAPHIC AND HYDROLOGIC CONDITIONS | .4 |
|      | А.     | EXISTING TOPOGRAPHY                      | .4 |
|      | В.     | EXISTING DRAINAGE PATTERN                | .5 |
|      | C.     | EXISTING STORM DRAIN FACILITIES          | .5 |
| III. | HYDR   | OLOGIC ANALYSIS                          | .6 |
|      | А.     | METHODOLOGY                              | .6 |
|      | В.     | EXISTING CONDITION                       | .6 |
|      | C.     | MITIGATED PROPOSED CONDITION             | .7 |
| IV.  | CON    | CLUSION1                                 | 0  |
| V.   | REFER  | RENCES1                                  | 1  |

# **APPENDICES**

| Appendix A: | SWMM Model Data           |
|-------------|---------------------------|
| Appendix B: | Flow Frequency Compliance |
| Appendix C: | Flow Duration Compliance  |

# I. INTRODUCTION

## a. PROJECT SITE DESCRIPTION

The subject site is located at 2220 South Escondido Boulevard, in the City of Escondido, County of San Diego, California. The site falls within the Kit Carson Neighborhood, designated as a Tier 1 in the Growth Management Element per the city of Escondido General Plan. The subject site measures approximately 315' along the frontage of S. Escondido Boulevard, and extends approximately 685' east along its longest edge, consisting of 3.47 acres of land. The site is bounded by a mobile home park to the north, South Escondido Boulevard to the west, existing commercial uses to the south, and residential property to the east. The property is currently occupied by a metal fabrication operation on the southwest corner, an HVAC mechanical shop on the northwest corner, a single-family residence with an attached garage on the northeast portion, and existing vegetation and weathered concrete throughout the site.

The land developer is proposing a residential community consisting of 62 townhomes on 3.47 acres within five existing parcels (APN 236-390-02-00, 236-390-03-00, 236-390-52-00, 236-390-53-00, and 236-390-54-00). As a part of the project, the developer is to provide a graded pad for the property to the east of the project, APN 236-390-51-00. The parcels are currently zoned as specific plan per the South City Centre specific plan. This report is intended to accompany the entitlement document submittals for the proposed project.

## b. PURPOSE AND SCOPE

The purpose of this preliminary study is to analyze the pre-and post-development drainage conditions in order to minimize the potential of storm water discharges from the project site from causing altered flow regimes and excessive downstream erosion in the receiving waters.

This preliminary hydromodification management analysis was performed utilizing continuous simulation hydrologic modeling based on Appendix G of the Escondido Storm Water Design Manual and the County of San Diego Hydromodification Management Plan.

# II. EXISTING TOPOGRAPHIC AND HYDROLOGIC CONDITIONS

## a. EXISTING TOPOGRAPHY

The project site is located on previously developed land, used for both residential and commercial uses. The subject site can generally be characterized by an average existing grade of approximately 8%, uniformly sloping from east to west. Elevations range between

approximately 611' to 655' above MSL. Existing vegetation within the site consists primarily of miscellaneous grasses, shrubs, weeds, and trees. Throughout the site, there exists scattered portions of weathered concrete. Existing improvements include a welding operation, abandoned commercial storefront, various sheds, single-family homes with attached garages, and a network of unpaved access roads within the site. The central portion of the subject site is largely undeveloped, primarily used to stockpile welding equipment and debris.

According to the NRCS Web Soil Survey, approximately 80% of the subject site is comprised of Fallbrook sandy loam (9 to 15 percent slopes, eroded) and 20% Ramona sandy loam (2 to 5 percent slopes), both of which are classified as hydrologic soil group C. The site is located within the San Dieguito River Watershed. Runoff for this project is conveyed to a natural channel near the intersection of South Escondido Boulevard and Centre City Parkway, where it travels to Kit Carson Creek, draining to Lake Hodges, then the San Dieguito River, ultimately draining into the Pacific Ocean via the San Dieguito Lagoon in Solana Beach.

# b. EXISTING DRAINAGE PATTERN

Approximately 1 acre of offsite area is tributary to the proposed site. The offsite tributary area extends approximately 120' east of the project boundary to a ridgeline approximately 60' east of the project with an approximate elevation of 655'. The storm flows from the offsite tributary area follow a northwesterly direction to the proposed site. Offsite flows were not considered as a part of this hydromodification analysis.

Onsite storm runoff tends to sheet flow in a similar westerly direction, exiting the site onto South Escondido Boulevard, where it travels north to a catch basin approximately 30' north of the site. There appears to be a privately maintained storm drain system running parallel to South Escondido Boulevard from the catch basin through the adjacent mobile home property, draining to a natural channel (name unknown) leading to Kit Carson Creek – however, this system is not known to the city of Escondido and is not identified in any of the documents provided by the City.

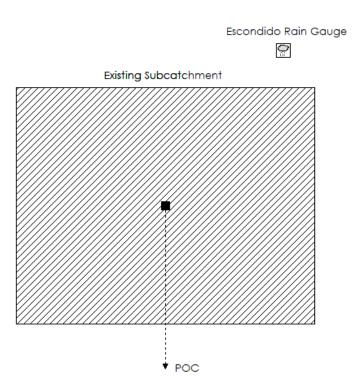
# c. EXISTING STORM DRAIN FACILITIES

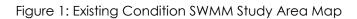
As discussed in section II.a, the subject site is sparsely developed. There are no known onsite existing storm drain facilities.

Offsite, as mentioned in section II.b, there appears to be a privately maintained existing storm drain system parallel to South Escondido Boulevard, appearing to convey storm flows northerly towards the natural channel. However, there is no available information regarding this system. For the purpose of this analysis, this system will not be recognized as an existing facility and will be disregarded. There is no other known public storm drain system in South Escondido Boulevard along the site frontage.

# III. HYDROLOGIC ANALYSIS

#### a. METHODOLOGY


The study site falls under the jurisdiction of the city of Escondido, in the County of San Diego. This preliminary hydromodification management analysis was performed utilizing continuous simulation hydrologic modeling based on Appendix G of the Escondido Storm Water Design Manual (BMP Design Manual). Storm Water Management Model (SWMM) Version 5.1 distributed by the United States Environmental Protection Agency (EPA) was used to analyze and design the development project to performance standards provided in Section 6-9 of the San Diego County Hydromodification Management Plan (HMP) and shown below.


- 1. For flow rates ranging from 10 percent, 30 percent or 50 percent of the pre-project 2-year runoff event (0.1Q<sub>2</sub>, 0.3Q<sub>2</sub>, or 0.5Q<sub>2</sub>) to the pre-project 10-year runoff event (Q<sub>10</sub>), the post-project discharge rates and durations shall not deviate above the pre-project rates and durations by more than 10 percent over and more than 10 percent of the length of the flow duration curve. The specific lower flow threshold will depend on results from the SCCWRP channel screening study and the critical flow calculator.
- 2. For flow rates ranging from the lower flow threshold to Q5, the post-project peak flows shall not exceed pre-project peak flows. For flow rates from Q5 to Q10, post-project peak flows may exceed pre-project flows by up to 10 percent for a 1-year frequency interval. For example, post-project flows could exceed pre-project flows by up to 10 percent for the interval from Q9 to Q10 or from Q5.5 to Q6.5, but not from Q8 to Q10.

No channel assessment has been completed for the project, so the most conservative low flow threshold of  $0.1Q_2$  was selected.

#### **b. EXISTING CONDITION**

The onsite existing condition was analyzed in SWMM as a single 3.26-acre subcatchment discharging to the point of compliance (POC) at the eastern property boundary. The subcatchment parameters were defined in accordance with Table G.1-4 in the BMP Design Manual. A diagram of the model is shown below.





# c. MITIGATED PROPOSED CONDITION

The proposed development is comprised of 62 townhomes, required public and private roadway and public utility improvements, and drainage and water quality facilities. A portion of the neighboring property to the east is proposed be graded as a part of this project and runoff generated from the disturbed area shall enter the proposed drainage system. The onsite mitigated proposed condition was partitioned into five separate subcatchments to reflect the site – roofs, landscape, hardscape, offsite pad, and BMP. The onsite mitigated proposed condition analysis area is identical in size to that of the existing.

The landscape subcatchment includes the open space area and all pervious landscaping onsite. Though only pervious areas were included in this subcatchment, an impervious value of 10% was assigned to this subcatchment as a conservative measure to account for concrete walkways. The roofs subcatchment consists of all roofing areas onsite. The hardscape subcatchment encompasses all the onsite street paving and curb-adjacent sidewalks. However, since the proposed BMP is a network of three 10.5'W x 6.5'H storm water detention facilities beneath the alley paving, the area of the BMP footprint was partitioned from the hardscape subcatchment and shown as its own subcatchment, with an LID control applied to 100% of its area. The offsite pad subcatchment encompasses the

grading of the property to the east of the project as a part of this development and was modeled with a 65% imperviousness.

The underground storage facility system was modeled as a 4.5' high rain barrel (or cistern) with a 1.4" diameter circular orifice, resulting in a 64.5-hour drawdown time per calculations in Appendix A. In the model, the proposed BMP outlets to the POC at the property boundary. However, the BMP actually outlets to a proposed Modular Wetlands biofiltration system, which provides pollutant control for the project. The Modular Wetlands system was omitted from the SWMM model for simplicity due to its unique horizontal flow design. For the purposes of hydromodification control, the orifice and storage volume provide sufficient mitigation for the model to show adequate storm flow frequency and duration control. We indicate that this model is somewhat conservative. It does not account for the additional flow control that the Modular Wetlands system is proposed to provide.

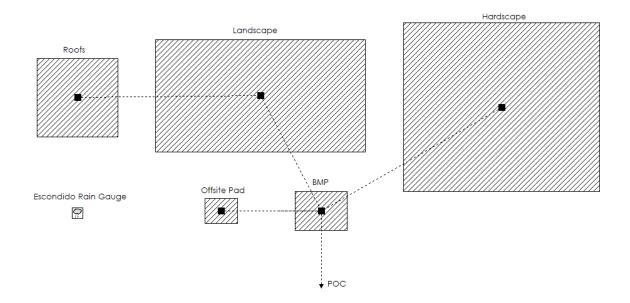



Figure 2: Proposed Condition SWMM Study Area Map

Analysis of the model as described above using continuous simulation yielded a large amount of output data. The results of the analysis for flow frequency and flow duration to comply with the HMP are shown in the following charts. Compliance is demonstrated by the mitigated proposed condition curves being uniformly below the existing condition curves for the interval of  $0.1Q_2$  through  $Q_{10}$ . Detailed output spreadsheets are shown in Appendices B and C of this report.

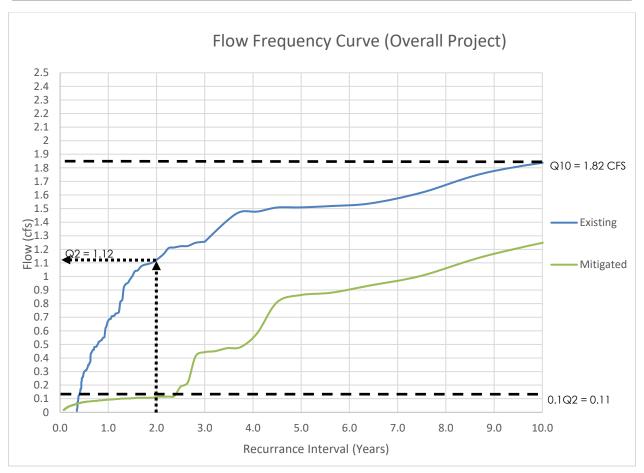



Figure 3: Peak Flow Frequency Curve

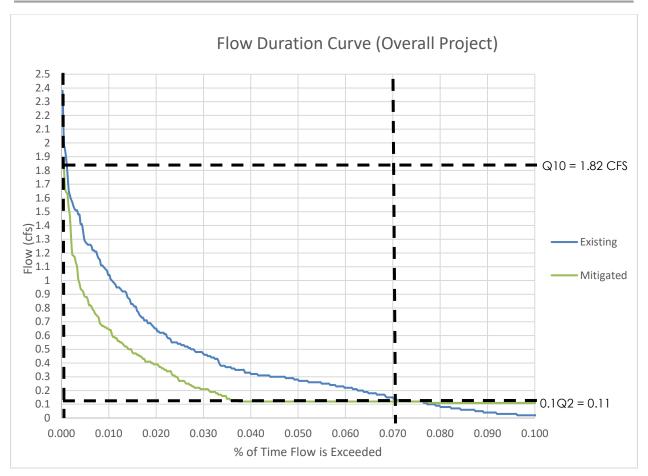



Figure 3: Peak Flow Duration Curve

# IV. CONCLUSION

Based upon analyses provided in this report, the mitigated proposed condition development will not adversely impact the flow duration or frequency of the  $0.1Q_2$  through  $Q_{10}$  runoff. As described previously, existing drainage patterns will generally be preserved. Hydromodification management is provided through three onsite proposed underground storage facilities.

# V. REFERENCES

- 1. Escondido Storm Water Design Manual (February 2016)
- 2. San Diego County Hydromodification Management Plan (March 2011)
- 3. EPA Storm Water Management Model User's Manual Version 5.1 (September 2015)

APPENDIX A

[TITLE] ;;Project Title/Notes

| [OPTIONS]<br>;;Option<br>FLOW_UNITS<br>INFILTRATION<br>FLOW_ROUTING<br>LINK_OFFSETS<br>MIN_SLOPE<br>ALLOW_PONDING<br>SKIP_STEADY_STATE                                                                         | Value<br>CFS<br>GREEN_AMPT<br>KINWAVE<br>DEPTH<br>Ø<br>NO<br>NO                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| START_DATE                                                                                                                                                                                                     | 09/24/1964                                                                             |
| START_TIME                                                                                                                                                                                                     | 13:00:00                                                                               |
| REPORT_START_DATE                                                                                                                                                                                              | 09/24/1964                                                                             |
| REPORT_START_TIME                                                                                                                                                                                              | 13:00:00                                                                               |
| END_DATE                                                                                                                                                                                                       | 05/23/2008                                                                             |
| END_TIME                                                                                                                                                                                                       | 22:00:00                                                                               |
| SWEEP_START                                                                                                                                                                                                    | 01/01                                                                                  |
| SWEEP_END<br>DRY_DAYS                                                                                                                                                                                          | 12/31<br>0                                                                             |
| REPORT_STEP                                                                                                                                                                                                    | 01:00:00                                                                               |
| WET_STEP                                                                                                                                                                                                       | 01:00:00                                                                               |
| DRY_STEP                                                                                                                                                                                                       | 01:00:00                                                                               |
| ROUTING_STEP                                                                                                                                                                                                   | 0:01:00                                                                                |
| INERTIAL_DAMPING<br>NORMAL_FLOW_LIMITED<br>FORCE_MAIN_EQUATION<br>VARIABLE_STEP<br>LENGTHENING_STEP<br>MIN_SURFAREA<br>MAX_TRIALS<br>HEAD_TOLERANCE<br>SYS_FLOW_TOL<br>LAT_FLOW_TOL<br>MINIMUM_STEP<br>THREADS | PARTIAL<br>BOTH<br>H-W<br>0.75<br>0<br>12.557<br>8<br>0.005<br>5<br>5<br>5<br>9.5<br>1 |
| [EVAPORATION]                                                                                                                                                                                                  |                                                                                        |
| ;;Data Source Par                                                                                                                                                                                              | rameters                                                                               |
|                                                                                                                                                                                                                | 5 .08 .11 .16 .18 .21 .21 .2 .16 .12                                                   |
| .08 .06<br>DRY_ONLY NO                                                                                                                                                                                         |                                                                                        |
| _<br>[RAINGAGES]                                                                                                                                                                                               | mat Interval SCF Source                                                                |

Escondido INTENSITY 1:00 1.0 FILE "escondido.txt" escondido ΙN [SUBCATCHMENTS] Rain Gage Outlet Area %Imperv Width %Slope ;;Name CurbLen SnowPack -----Escondido POC 3.26 0 166 6 Existing 0 [SUBAREAS] ;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo PctRouted -----.012 .03 .05 .1 25 OUTLET Existing [INFILTRATION] ;;Subcatchment Suction Ksat IMD 6 .1 .31 Existing [OUTFALLS] Elevation Type Stage Data Gated Route To ;;Name POC 0 FREE NO [REPORT] ;;Reporting Options INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 0.000 10000.000 10000.000 Units None [COORDINATES] ;;Node X-Coord Y-Coord ;;----- -----POC 2306.590 2979.943 [VERTICES] X-Coord Y-Coord ;;Link ;;-----

| [Polygons]<br>;;Subcatchment<br> |          | Y-Coord                                        |
|----------------------------------|----------|------------------------------------------------|
| Existing                         | 168.998  | 3583.916                                       |
| Existing                         | 4446.387 | 3583.916                                       |
| Existing                         | 4446.387 | 6975.524                                       |
| Existing                         | 168.998  | 6975.524                                       |
| [SYMBOLS]<br>;;Gage<br>;;        | X-Coord  | Y-Coord                                        |
| Escondido                        | 4009.324 | 7482.517                                       |
| [LABELS]                         |          |                                                |
| ;;X-Coord                        | Y-Coord  | Label                                          |
| 3181.818<br>0 0                  | 7867.133 | "Escondido Rain Gauge" "" "Century Gothic" 10  |
| 1433.566<br>0 0                  | 7237.762 | "Existing Subcatchment" "" "Century Gothic" 10 |
| 2447.552                         | 3053.613 | "POC" "" "Century Gothic" 10 0 0               |

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) \_\_\_\_\_ \*\*\*\*\* Rainfall File Summary \*\*\*\*\*\*\* Station First Recording Periods Periods Periods Last Frequency w/Precip ID Date Date Missing Malfunc. \_\_\_\_\_ escondido 09/24/1964 05/23/2008 60 min 7025 0 0 NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. \*\*\*\*\* Analysis Options \*\*\*\*\* Flow Units ..... CFS Process Models: Rainfall/Runoff ..... YES RDII ..... NO Snowmelt ..... NO Groundwater ..... NO Flow Routing ..... NO Water Quality ..... NO Infiltration Method ..... GREEN\_AMPT Starting Date ..... 09/24/1964 13:00:00 Ending Date ..... 05/23/2008 22:00:00 Antecedent Dry Days ..... 0.0 Report Time Step ..... 01:00:00 Wet Time Step ..... 01:00:00 Dry Time Step ..... 01:00:00 \*\*\*\*\*\* Volume Depth acre-feet Runoff Quantity Continuity inches \*\*\*\*\*\* \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ Total Precipitation ..... 166.021 611.120 Evaporation Loss ..... 0.975 3.589 Infiltration Loss ..... 571.090 155.146 Surface Runoff ..... 49.294 13.391 Final Storage ..... 0.000 0.000 Continuity Error (%) ..... -2.103

| *****                   | Volume    | Volume   |
|-------------------------|-----------|----------|
| Flow Routing Continuity | acre-feet | 10^6 gal |
| ******                  |           |          |
| Dry Weather Inflow      | 0.000     | 0.000    |
| Wet Weather Inflow      | 13.391    | 4.364    |
| Groundwater Inflow      | 0.000     | 0.000    |
| RDII Inflow             | 0.000     | 0.000    |
| External Inflow         | 0.000     | 0.000    |
| External Outflow        | 13.391    | 4.364    |
| Flooding Loss           | 0.000     | 0.000    |
| Evaporation Loss        | 0.000     | 0.000    |
| Exfiltration Loss       | 0.000     | 0.000    |
| Initial Stored Volume   | 0.000     | 0.000    |
| Final Stored Volume     | 0.000     | 0.000    |
| Continuity Error (%)    | 0.000     |          |
|                         |           |          |

| Total Peak Runoff                                   | Total  | Total | Total | Total  | Total  |  |
|-----------------------------------------------------|--------|-------|-------|--------|--------|--|
|                                                     | Precip | Runon | Evap  | Infil  | Runoff |  |
| Runoff Runoff Coeff<br>Subcatchment<br>10^6 gal CFS | in     | in    | in    | in     | in     |  |
|                                                     |        |       |       |        |        |  |
| Existing<br>4.36 2.41 0.081                         | 611.12 | 0.00  | 3.59  | 571.09 | 49.29  |  |

Analysis begun on: Wed Dec 02 17:49:37 2020 Analysis ended on: Wed Dec 02 17:50:00 2020 Total elapsed time: 00:00:23 [TITLE] ;;Project Title/Notes

| [OPTIONS]<br>;;Option<br>FLOW_UNITS<br>INFILTRATION<br>FLOW_ROUTING<br>LINK_OFFSETS<br>MIN_SLOPE<br>ALLOW_PONDING<br>SKIP_STEADY_STATE                                                                                  | Value<br>CFS<br>GREEN_AMPT<br>KINWAVE<br>DEPTH<br>Ø<br>NO<br>NO                                                                           |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| START_DATE<br>START_TIME<br>REPORT_START_DATE<br>REPORT_START_TIME<br>END_DATE<br>END_TIME<br>SWEEP_START<br>SWEEP_END<br>DRY_DAYS<br>REPORT_STEP<br>WET_STEP<br>DRY_STEP<br>ROUTING_STEP                               | <pre>13:00:00<br/>05/23/2008<br/>22:00:00<br/>01/01<br/>12/31<br/>0<br/>01:00:00<br/>01:00:00<br/>01:00:00<br/>01:00:00<br/>0:01:00</pre> |             |
| RULE_STEP<br>INERTIAL_DAMPING<br>NORMAL_FLOW_LIMIT<br>FORCE_MAIN_EQUATJ<br>VARIABLE_STEP<br>LENGTHENING_STEP<br>MIN_SURFAREA<br>MAX_TRIALS<br>HEAD_TOLERANCE<br>SYS_FLOW_TOL<br>LAT_FLOW_TOL<br>MINIMUM_STEP<br>THREADS | TED BOTH<br>TON H-W<br>0.75                                                                                                               |             |
| [EVAPORATION]<br>;;Data Source<br>;;<br>MONTHLY<br>.08 .06<br>DRY_ONLY<br>[RAINGAGES]                                                                                                                                   | Parameters<br>                                                                                                                            | .18 .21 .21 |
| ;;Name                                                                                                                                                                                                                  | Format Interval SCF                                                                                                                       | Source      |

.2 .16 .12

| ;;<br>Escondido<br>IN                            |                  |             |       |           |        | "escondido.t | xt"          | escoi              | ndido    |
|--------------------------------------------------|------------------|-------------|-------|-----------|--------|--------------|--------------|--------------------|----------|
| [SUBCATCHMENTS]<br>;;Name<br>CurbLen SnowP<br>;; | ack              |             |       |           | Area   | ·            | Wid          | th<br>             | %Slope   |
| BuildingRoofs<br>0                               |                  |             |       | scape     | 0.94   | 100          | 55           |                    | 1        |
| Hardscape<br>Ø                                   | Escondido        |             | bmp   |           | 1.16   | 100          | 55           |                    | 2        |
| Landscape<br>0                                   | Escondido        |             | bmp   |           | 1.00   | 10           | 100          |                    | 2        |
| BMP<br>Ø                                         | Escondido        |             | рос   |           | .075   | 100          | 120          |                    | 0        |
| RV<br>0                                          | Escondido        |             | bmp   |           | .10    | 65           | 50           |                    | 2        |
| [SUBAREAS]<br>;;Subcatchment<br>PctRouted<br>;;  | -                |             |       |           |        |              |              | Route <sup>-</sup> | Го       |
| <br>BuildingRoofs                                | .012             | .1          |       | .05       | .1     | 25           |              | OUTLE              | г        |
| Hardscape                                        |                  |             |       | .05       | .1     | 25           |              | OUTLE              |          |
| Landscape                                        |                  | .24         |       | .05       | .2     | 25           |              | OUTLE              |          |
| BMP                                              | .012             | .1          |       | .05       | .1     | 25           |              | OUTLE              |          |
| RV                                               | 0.012            | 0.03        |       | .05       | .2     | 25           |              | OUTLE              | Г        |
| [INFILTRATION]<br>;;Subcatchment                 |                  |             |       |           |        |              |              |                    |          |
| ;;                                               |                  |             |       |           |        |              |              |                    |          |
| BuildingRoofs<br>Hardscape                       | 6<br>6           | .1<br>.1    |       | .31       | /<br>7 | 0            |              |                    |          |
| Landscape                                        | 6                | .1          |       | .32       | ,<br>7 | 0            |              |                    |          |
| BMP                                              | 6                | .1          |       | .31       | ,<br>7 | 0            |              |                    |          |
| RV                                               | 4.33             | .43         |       | .453      | ,<br>7 | 0            |              |                    |          |
| [LID_CONTROLS]<br>;;Name                         | Type/Layer       | Param       | eters |           |        |              |              |                    |          |
| ;;                                               |                  |             |       |           |        |              |              |                    |          |
| HydromodStorage                                  | RB               | - 4         |       | <b>c7</b> | 0      | 0            |              |                    |          |
| HydromodStorage<br>HydromodStorage               | STORAGE<br>DRAIN | 54<br>.2179 |       | .67<br>.5 | 0<br>0 | 0<br>0       |              | 0                  | 0        |
| Tyuromoustorage                                  |                  | .21/9       |       | ر.        | U      | U            |              | 0                  | U        |
| [LID_USAGE]                                      |                  | _           | NI. 7 |           |        |              | <b>C</b> - 1 | -                  | <b>-</b> |
| ;;Subcatchment                                   | LID Proces       | 5           | Numb  | er Area   | Wic    | lth Init     | JPC          | Fro                | omImp    |

ToPerv RptFile DrainTo FromPerv ;;----- ----- ------HydromodStorage 1 3267.00 24 \* 0 BMP 0 0 \* 0 [OUTFALLS] ;;Name Elevation Type Stage Data Gated Route To POC 0 FREE NO [REPORT] ;;Reporting Options SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 0.000 0.000 10000.000 10000.000 Units None [COORDINATES] ;;Node X-Coord Y-Coord ;;----- -----POC 4550.173 1637.832 [VERTICES] X-Coord Y-Coord ;;Link ;;-----[Polygons] ;;Subcatchment X-Coord Y-Coord ;;----- -----BuildingRoofs -688.077 4386.601 BuildingRoofs 804.628 BuildingRoofs 804.628 4386.601 5823.189 BuildingRoofs -688.077 5823.189 Hardscape 6065.786 3381.248 Hardscape 9668.480 3381.248 Hardscape 9668.480 6478.891 6065.786 Hardscape 6478.891 Landscape 1496.158 4107.312 Landscape 5356.989 4107.312 Landscape 5356.989 6172.408 1496.158 Landscape 6172.408 BMP 4068.463 2659.501 BMP 5022.447 2659.501 BMP 5022.447 3377.795

| BMP<br>RV<br>RV<br>RV<br>RV | 4068.463<br>2404.844<br>2998.847<br>2998.847<br>2410.611 | 3377.795<br>2791.234<br>2785.467<br>3258.362<br>3258.362 |
|-----------------------------|----------------------------------------------------------|----------------------------------------------------------|
| [SYMBOLS]<br>;;Gage         | X-Coord                                                  | Y-Coord                                                  |
| ;;                          |                                                          |                                                          |
|                             | 69.930                                                   | 2960.373                                                 |
| [LABELS]                    |                                                          |                                                          |
| ;;X-Coord                   | Y-Coord                                                  | Label                                                    |
| -198.135                    | 6083.916                                                 | "Roofs" "" "Century Gothic" 10 0 0                       |
| 2925.408                    | 6433.566                                                 | "Landscape" "" "Century Gothic" 10 0 0                   |
| 7517.482                    | 6689.977                                                 | "Hardscape" "" "Century Gothic" 10 0 0                   |
| 4393.939                    | 3648.019                                                 | "BMP" "" "Century Gothic" 10 0 0                         |
| -745.921                    | 3379.953                                                 | "Escondido Rain Gauge" "" "Century Gothic" 10            |
| 00                          |                                                          | C ,                                                      |
| 4662.005                    | 1771.562                                                 | "POC" "" "Century Gothic" 10 0 0                         |
| 2335.640                    | 3494.810                                                 | "Offsite Pad" "" "Century Gothic" 10 0 0                 |

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) \_\_\_\_\_ \*\*\*\*\* Rainfall File Summary \*\*\*\*\*\* Station First Recording Periods Periods Periods Last ID Date Date Frequency w/Precip Missing Malfunc. \_\_\_\_\_ escondido 09/24/1964 05/23/2008 60 min 7025 0 0 NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. \*\*\*\*\* Analysis Options \*\*\*\*\* Flow Units ..... CFS Process Models: Rainfall/Runoff ..... YES RDII ..... NO Snowmelt ..... NO Groundwater ..... NO Flow Routing ..... NO Water Quality ..... NO Infiltration Method ..... GREEN\_AMPT Starting Date ..... 09/24/1964 13:00:00 Ending Date ..... 05/23/2008 22:00:00 Antecedent Dry Days ..... 0.0 Report Time Step ..... 01:00:00 Wet Time Step ..... 01:00:00 Dry Time Step ..... 01:00:00 \*\*\*\*\*\* Volume Depth acre-feet Runoff Quantity Continuity inches \*\*\*\*\*\* ----\_ \_ \_ \_ \_ \_ \_ \_ Total Precipitation ..... 166.785 611.120 Evaporation Loss ..... 17.959 65.803 Infiltration Loss ..... 74.015 271.200 Surface Runoff ..... 17.368 4.740 LID Drainage ..... 77.935 285.565 0.040 Final Storage ..... 0.011 Continuity Error (%) ..... -4.722

| ******                  | Volume    | Volume   |
|-------------------------|-----------|----------|
| Flow Routing Continuity | acre-feet | 10^6 gal |
| ******                  |           |          |
| Dry Weather Inflow      | 0.000     | 0.000    |
| Wet Weather Inflow      | 82.675    | 26.941   |
| Groundwater Inflow      | 0.000     | 0.000    |
| RDII Inflow             | 0.000     | 0.000    |
| External Inflow         | 0.000     | 0.000    |
| External Outflow        | 82.675    | 26.941   |
| Flooding Loss           | 0.000     | 0.000    |
| Evaporation Loss        | 0.000     | 0.000    |
| Exfiltration Loss       | 0.000     | 0.000    |
| Initial Stored Volume   | 0.000     | 0.000    |
| Final Stored Volume     | 0.000     | 0.000    |
| Continuity Error (%)    | 0.000     |          |

\*\*\*\*\*\*

Analysis begun on: Mon Jan 18 11:43:13 2021 Analysis ended on: Mon Jan 18 11:43:34 2021 Total elapsed time: 00:00:21 February, 2021

APPENDIX B

| Flo        | w Fre          | quency         | Compli         | iance       |
|------------|----------------|----------------|----------------|-------------|
|            | Pre            | Post           |                | Analysis    |
| Return     | Existing       | Mitigated      |                |             |
| Period     | Peak Q         | Peak Q (cfs)   | Mitigated      |             |
| (Years)    | (cfs)          |                | /Existing (%)  | Compliance? |
| 45.0       | 2.380          | 1.880          | 78.99          | N/A         |
| 22.5       | 1.995          | 1.824          | 91.43          | N/A         |
| 15.0       | 1.948          | 1.475          | 75.72          | N/A         |
| 11.3       | 1.883          | 1.325          | 70.37          | Yes         |
| 9.0        | 1.777          | 1.167          | 65.67          | Yes         |
| 7.5        | 1.618          | 1.006          | 62.18          | Yes         |
| 6.4        | 1.538          | 0.934          | 60.73          | Yes         |
| 5.6        | 1.519          | 0.881          | 58.00          | Yes         |
| 5.0        | 1.509          | 0.864          | 57.26          | Yes         |
| 4.5        | 1.508          | 0.811          | 53.78          | Yes         |
| 4.1        | 1.478          | 0.584          | 39.51          | Yes         |
| 3.8        | 1.477          | 0.481          | 32.57          | Yes         |
| 3.5        | 1.410          | 0.472          | 33.48          | Yes         |
| 3.0        | 1.256          | 0.450          | 35.83          | Yes         |
| 3.0        | 1.256          | 0.443          | 35.27          | Yes         |
| 2.8        | 1.248          | 0.413          | 33.09          | Yes         |
| 2.7        | 1.225          | 0.221          | 18.04          | Yes         |
| 2.5        | 1.223          | 0.189          | 15.45          | Yes         |
| 2.4        | 1.214          | 0.120          | 9.88           | Yes         |
| 2.3        | 1.209          | 0.116          | 9.59           | Yes         |
| 2.1        | 1.163          | 0.115          | 9.89           | Yes         |
| 2.0        | 1.111          | 0.115          | 10.35          | Yes         |
| 2.0        | 1.111          | 0.109          | 9.81           | Yes         |
| 1.9        | 1.098          | 0.108          | 9.84           | Yes         |
| 1.8        | 1.090          |                | 9.82           | Yes         |
| 1.7        | 1.084          | 0.107          | 9.87           | Yes         |
| 1.7<br>1.6 | 1.071<br>1.045 | 0.107          | 9.99           | Yes<br>Yes  |
|            |                | 0.107          | 10.24          |             |
| 1.6<br>1.5 | 1.038<br>1.004 | 0.105<br>0.104 | 10.12<br>10.36 | Yes<br>Yes  |
| 1.5        | 0.979          | 0.104          | 10.36          | Yes         |
| 1.3        | 0.975          | 0.102          | 10.42          | Yes         |
| 1.4        | 0.933          | 0.102          | 10.08          | Yes         |
| 1.4        | 0.943          | 0.102          | 10.82          | Yes         |
| 1.3        | 0.828          | 0.101          | 11.01          | Yes         |
| 1.3        | 0.828          | 0.101          | 12.20          | Yes         |
| 1.3        | 0.739          | 0.101          | 13.26          | Yes         |
| 1.2        | 0.735          | 0.098          | 13.44          | Yes         |
| 1.2        | 0.725          | 0.097          | 13.36          | Yes         |
| 1.1        | 0.720          | 0.096          | 13.45          | Yes         |
| 1.1        | 0.714          | 0.095          | 13.42          | Yes         |
| 1.1        | 0.700          | 0.000          | 13.42          | 103         |

| 1.1 | 0.707 | 0.095 | 13.44 | Yes |
|-----|-------|-------|-------|-----|
| 1.1 | 0.688 | 0.094 | 13.66 | Yes |
| 1.0 | 0.685 | 0.093 | 13.58 | Yes |
| 1.0 | 0.675 | 0.093 | 13.78 | Yes |
| 1.0 | 0.660 | 0.093 | 14.09 | Yes |
| 1.0 | 0.633 | 0.092 | 14.53 | Yes |
| 0.9 | 0.616 | 0.091 | 14.77 | Yes |
| 0.9 | 0.554 | 0.091 | 16.43 | Yes |
| 0.9 | 0.550 | 0.090 | 16.36 | Yes |
| 0.9 | 0.545 | 0.089 | 16.33 | Yes |
| 0.9 | 0.543 | 0.088 | 16.48 | Yes |
| 0.9 | 0.530 | 0.088 | 16.60 | Yes |
| 0.5 | 0.530 | 0.088 | 16.76 | Yes |
| 0.8 | 0.523 | 0.088 | 16.86 |     |
| 0.8 |       | 0.088 |       | Yes |
|     | 0.518 |       | 16.80 | Yes |
| 0.8 | 0.506 | 0.086 | 17.00 | Yes |
| 0.8 | 0.501 | 0.085 | 16.97 | Yes |
| 0.8 | 0.487 | 0.085 | 17.45 | Yes |
| 0.8 | 0.483 | 0.084 | 17.39 | Yes |
| 0.7 | 0.481 | 0.084 | 17.46 | Yes |
| 0.7 | 0.481 | 0.084 | 17.46 | Yes |
| 0.7 | 0.481 | 0.083 | 17.26 | Yes |
| 0.7 | 0.461 | 0.083 | 18.00 | Yes |
| 0.7 | 0.461 | 0.083 | 18.00 | Yes |
| 0.7 | 0.459 | 0.082 | 17.86 | Yes |
| 0.7 | 0.453 | 0.082 | 18.10 | Yes |
| 0.7 | 0.446 | 0.082 | 18.39 | Yes |
| 0.7 | 0.438 | 0.082 | 18.72 | Yes |
| 0.6 | 0.434 | 0.081 | 18.66 | Yes |
| 0.6 | 0.410 | 0.081 | 19.76 | Yes |
| 0.6 | 0.379 | 0.081 | 21.37 | Yes |
| 0.6 | 0.366 | 0.080 | 21.86 | Yes |
| 0.6 | 0.364 | 0.080 | 21.98 | Yes |
| 0.6 | 0.351 | 0.080 | 22.79 | Yes |
| 0.6 | 0.349 | 0.079 | 22.64 | Yes |
| 0.6 | 0.348 | 0.079 | 22.70 | Yes |
| 0.6 | 0.346 | 0.079 | 22.83 | Yes |
| 0.6 | 0.330 | 0.079 | 23.94 | Yes |
| 0.6 | 0.323 | 0.079 | 24.46 | Yes |
| 0.6 | 0.321 | 0.078 | 24.30 | Yes |
| 0.6 | 0.315 | 0.078 | 24.76 | Yes |
| 0.5 | 0.313 | 0.078 | 24.92 | Yes |
| 0.5 | 0.309 | 0.077 | 24.92 | Yes |
| 0.5 | 0.307 | 0.077 | 25.08 | Yes |
| 0.5 | 0.305 | 0.077 | 25.25 | Yes |
| 0.5 | 0.303 | 0.076 | 25.08 | Yes |
| 0.5 | 0.303 | 0.076 | 25.08 | Yes |
| 0.5 | 0.503 | 0.076 | 25.08 | 162 |

| 0.5 | 0.303 | 0.075 | 24.75 | Yes |
|-----|-------|-------|-------|-----|
| 0.5 | 0.298 | 0.075 | 25.17 | Yes |
| 0.5 | 0.292 | 0.075 | 25.68 | Yes |
| 0.5 | 0.284 | 0.075 | 26.41 | Yes |
| 0.5 | 0.280 | 0.075 | 26.79 | Yes |
| 0.5 | 0.266 | 0.074 | 27.82 | Yes |
| 0.5 | 0.259 | 0.074 | 28.57 | Yes |
| 0.5 | 0.257 | 0.074 | 28.79 | Yes |
| 0.5 | 0.257 | 0.073 | 28.40 | Yes |
| 0.5 | 0.252 | 0.073 | 28.97 | Yes |
| 0.5 | 0.250 | 0.073 | 29.20 | Yes |
| 0.5 | 0.238 | 0.073 | 30.67 | Yes |
| 0.5 | 0.232 | 0.072 | 31.03 | Yes |
| 0.4 | 0.218 | 0.072 | 33.03 | Yes |
| 0.4 | 0.179 | 0.070 | 39.11 | Yes |
| 0.4 | 0.174 | 0.070 | 40.23 | Yes |
| 0.4 | 0.169 | 0.070 | 41.42 | Yes |
| 0.4 | 0.168 | 0.070 | 41.67 | Yes |
| 0.4 | 0.166 | 0.070 | 42.17 | Yes |
| 0.4 | 0.154 | 0.069 | 44.81 | Yes |
| 0.4 | 0.147 | 0.069 | 46.94 | Yes |
| 0.4 | 0.135 | 0.069 | 51.11 | Yes |
| 0.4 | 0.134 | 0.069 | 51.49 | Yes |
| 0.4 | 0.131 | 0.069 | 52.67 | Yes |
| 0.4 | 0.122 | 0.068 | 55.74 | Yes |
| 0.4 | 0.122 | 0.068 | 55.74 | Yes |
| 0.4 | 0.122 | 0.067 | 54.92 | Yes |
| 0.4 | 0.122 | 0.067 | 54.92 | Yes |
| 0.4 | 0.118 | 0.066 | 55.93 | Yes |
| 0.4 | 0.108 | 0.066 | 61.11 | Yes |
|     |       | -     | -     |     |

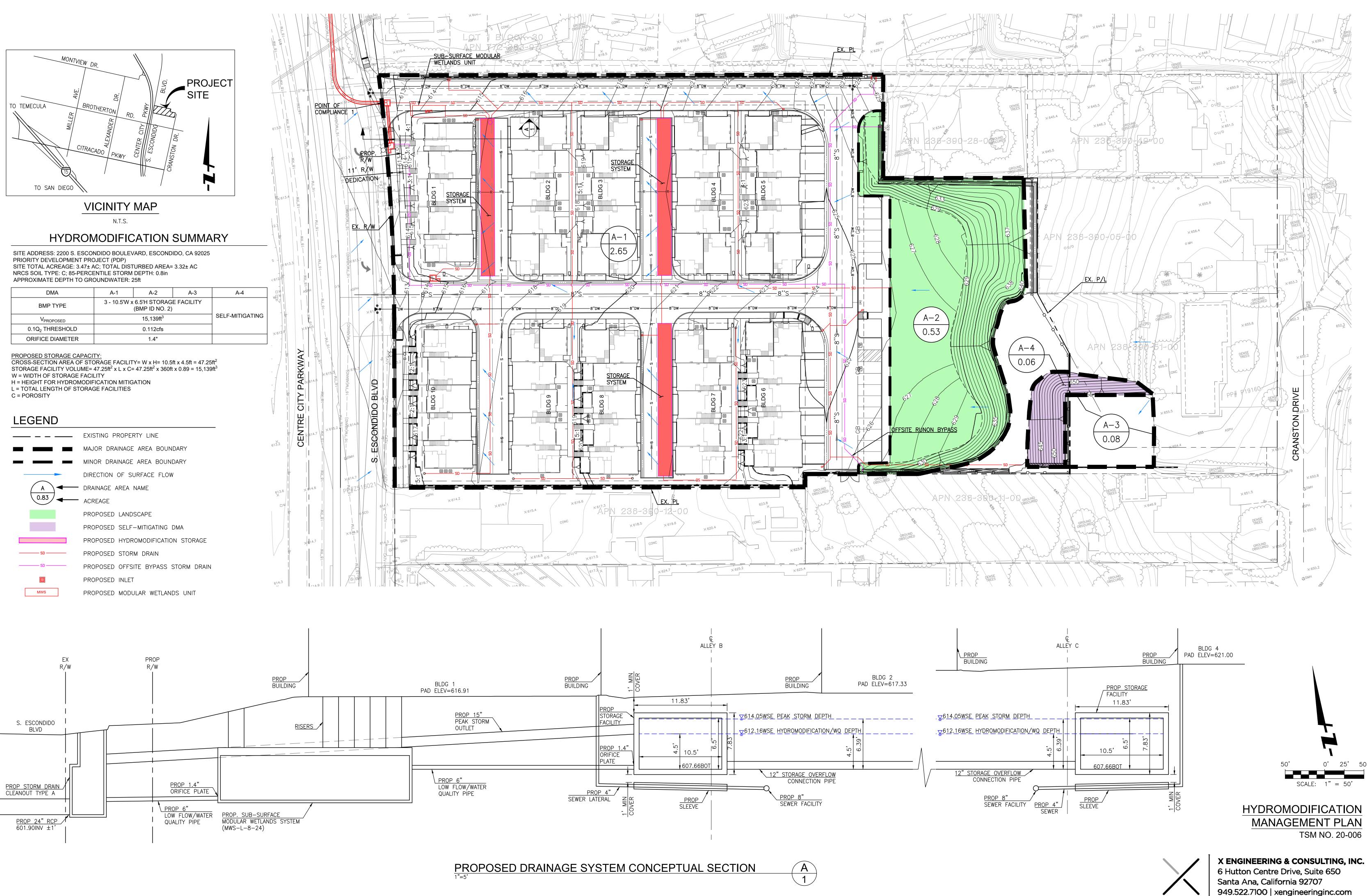
February, 2021

APPENDIX C

# Flow Duration Compliance

| Low threshold | 10%    |
|---------------|--------|
| Q2=           | 1.12   |
| Q10=          | 1.82   |
| Step (cfs)    | 0.0173 |
| Count (hours) | 394470 |

|          |        | Existi     | ng     | Proposed m | nitigated | Mitigated |           |
|----------|--------|------------|--------|------------|-----------|-----------|-----------|
| Interval | Q      | Hours w/>Q | % time | Hours w/>Q | % time    | post/pre  | Pass/fail |
| 1        | 0.1123 | 301        | 0.076% | 305        | 0.077%    | 101.329%  | Pass      |
| 2        | 0.1295 | 288        | 0.073% | 147        | 0.037%    | 51.042%   | Pass      |
| 3        | 0.1468 | 276        | 0.070% | 137        | 0.035%    | 49.638%   | Pass      |
| 4        | 0.1641 | 269        | 0.068% | 133        | 0.034%    | 49.442%   | Pass      |
| 5        | 0.1814 | 255        | 0.065% | 128        | 0.032%    | 50.196%   | Pass      |
| 6        | 0.1987 | 251        | 0.064% | 123        | 0.031%    | 49.004%   | Pass      |
| 7        | 0.2160 | 242        | 0.061% | 115        | 0.029%    | 47.521%   | Pass      |
| 8        | 0.2333 | 228        | 0.058% | 108        | 0.027%    | 47.368%   | Pass      |
| 9        | 0.2506 | 216        | 0.055% | 103        | 0.026%    | 47.685%   | Pass      |
| 10       | 0.2679 | 205        | 0.052% | 102        | 0.026%    | 49.756%   | Pass      |
| 11       | 0.2852 | 193        | 0.049% | 97         | 0.025%    | 50.259%   | Pass      |
| 12       | 0.3025 | 173        | 0.044% | 94         | 0.024%    | 54.335%   | Pass      |
| 13       | 0.3198 | 163        | 0.041% | 92         | 0.023%    | 56.442%   | Pass      |
| 14       | 0.3370 | 152        | 0.039% | 91         | 0.023%    | 59.868%   | Pass      |
| 15       | 0.3543 | 144        | 0.037% | 85         | 0.022%    | 59.028%   | Pass      |
| 16       | 0.3716 | 136        | 0.034% | 81         | 0.021%    | 59.559%   | Pass      |
| 17       | 0.3889 | 132        | 0.033% | 80         | 0.020%    | 60.606%   | Pass      |
| 18       | 0.4062 | 131        | 0.033% | 74         | 0.019%    | 56.489%   | Pass      |
| 19       | 0.4235 | 130        | 0.033% | 69         | 0.017%    | 53.077%   | Pass      |
| 20       | 0.4408 | 124        | 0.031% | 66         | 0.017%    | 53.226%   | Pass      |
| 21       | 0.4581 | 121        | 0.031% | 64         | 0.016%    | 52.893%   | Pass      |
| 22       | 0.4754 | 117        | 0.030% | 59         | 0.015%    | 50.427%   | Pass      |
| 23       | 0.4927 | 110        | 0.028% | 58         | 0.015%    | 52.727%   | Pass      |
| 24       | 0.5100 | 107        | 0.027% | 55         | 0.014%    | 51.402%   | Pass      |
| 25       | 0.5273 | 102        | 0.026% | 52         | 0.013%    | 50.980%   | Pass      |
| 26       | 0.5445 | 96         | 0.024% | 50         | 0.013%    | 52.083%   | Pass      |
| 27       | 0.5618 | 91         | 0.023% | 46         | 0.012%    | 50.549%   | Pass      |
| 28       | 0.5791 | 90         | 0.023% | 46         | 0.012%    | 51.111%   | Pass      |
| 29       | 0.5964 | 87         | 0.022% | 42         | 0.011%    | 48.276%   | Pass      |
| 30       | 0.6137 | 85         | 0.022% | 41         | 0.010%    | 48.235%   | Pass      |
| 31       | 0.6310 | 79         | 0.020% | 41         | 0.010%    | 51.899%   | Pass      |
| 32       | 0.6483 | 79         | 0.020% | 39         | 0.010%    | 49.367%   | Pass      |
| 33       | 0.6656 | 76         | 0.019% | 35         | 0.009%    | 46.053%   | Pass      |
| 34       | 0.6829 | 74         | 0.019% | 32         | 0.008%    | 43.243%   | Pass      |
| 35       | 0.7002 | 71         | 0.018% | 31         | 0.008%    | 43.662%   | Pass      |
| 36       | 0.7175 | 68         | 0.017% | 31         | 0.008%    | 45.588%   | Pass      |
| 37       | 0.7347 | 66         | 0.017% | 30         | 0.008%    | 45.455%   | Pass      |


| 38         0.7520         64         0.016%         28         0.007%         43.750%           39         0.7693         64         0.016%         27         0.007%         42.188%           40         0.7866         62         0.016%         26         0.007%         41.935%           41         0.8039         62         0.016%         25         0.006%         40.323%           42         0.8212         59         0.015%         22         0.006%         37.288%           43         0.8385         57         0.014%         22         0.006%         38.596%           44         0.8558         57         0.014%         22         0.006%         38.596%           45         0.8731         55         0.014%         21         0.005%         38.182% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 400.7866620.016%260.007%41.935%410.8039620.016%250.006%40.323%420.8212590.015%220.006%37.288%430.8385570.014%220.006%38.596%440.8558570.014%220.006%38.596%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass<br>Pass<br>Pass<br>Pass                         |
| 410.8039620.016%250.006%40.323%420.8212590.015%220.006%37.288%430.8385570.014%220.006%38.596%440.8558570.014%220.006%38.596%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass<br>Pass<br>Pass                                 |
| 420.8212590.015%220.006%37.288%430.8385570.014%220.006%38.596%440.8558570.014%220.006%38.596%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pass<br>Pass                                         |
| 430.8385570.014%220.006%38.596%440.8558570.014%220.006%38.596%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pass                                                 |
| 44         0.8558         57         0.014%         22         0.006%         38.596%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| 44         0.8558         57         0.014%         22         0.006%         38.596%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dace                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I Fass                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pass                                                 |
| 46 0.8904 54 0.014% 18 0.005% 33.333%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 47 0.9077 54 0.014% 18 0.005% 33.333%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 48         0.9250         50         0.013%         17         0.004%         34.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 49         0.9422         48         0.012%         15         0.004%         31.250%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 50         0.9595         45         0.011%         15         0.004%         33.333%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 51         0.9768         44         0.011%         15         0.004%         34.091%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 51         0.5768         44         0.011%         15         0.004%         54.051%           52         0.9941         42         0.011%         14         0.004%         33.333%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 52         0.5541         42         0.011%         14         0.004%         55.555%           53         1.0114         40         0.010%         13         0.003%         32.500%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 53         1.0114         40         0.010%         13         0.003%         32.500%           54         1.0287         40         0.010%         13         0.003%         32.500%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 54         1.0287         40         0.010%         13         0.003%         32.300%           55         1.0460         38         0.010%         13         0.003%         34.211%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 55         1.0400         38         0.010%         13         0.003%         34.211%           56         1.0633         38         0.010%         13         0.003%         34.211%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 50         1.0033         38         0.010%         13         0.003%         34.211%           57         1.0806         36         0.009%         13         0.003%         36.111%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 57         1.0806         56         0.009%         15         0.005%         58.111%           58         1.0979         35         0.009%         13         0.003%         37.143%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pass                                                 |
| 59         1.1152         32         0.008%         12         0.003%         37.500%           60         1.1325         32         0.008%         11         0.003%         34.375%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pass                                                 |
| 61         1.1497         32         0.008%         11         0.003%         34.375%           62         1.1670         20         0.008%         14         0.003%         36.677%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass                                                 |
| 62         1.1670         30         0.008%         11         0.003%         36.667%           62         1.1042         20         0.007%         0         0.003%         34.024%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 63         1.1843         29         0.007%         9         0.002%         31.034%           64         1.2016         20         0.007%         9         0.002%         31.034%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pass                                                 |
| 64         1.2016         29         0.007%         8         0.002%         27.586%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 65         1.2189         27         0.007%         8         0.002%         29.630%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 66         1.2362         25         0.006%         8         0.002%         32.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 67         1.2535         24         0.006%         8         0.002%         33.333%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 68         1.2708         20         0.005%         8         0.002%         40.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 69         1.2881         19         0.005%         8         0.002%         42.105%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 70 1.3054 18 0.005% 8 0.002% 44.444%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 71 1.3227 18 0.005% 7 0.002% 38.889%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 72 1.3399 18 0.005% 7 0.002% 38.889%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 73 1.3572 18 0.005% 7 0.002% 38.889%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 74 1.3745 17 0.004% 7 0.002% 41.176%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 75 1.3918 17 0.004% 7 0.002% 41.176%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 76         1.4091         17         0.004%         7         0.002%         41.176%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 77 1.4264 15 0.004% 7 0.002% 46.667%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 78 1.4437 15 0.004% 7 0.002% 46.667%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 79         1.4610         15         0.004%         7         0.002%         46.667%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 80 1.4783 15 0.004% 6 0.002% 40.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 81         1.4956         13         0.003%         6         0.002%         46.154%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 82 1.5129 11 0.003% 6 0.002% 54.545%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 83 1.5302 10 0.003% 5 0.001% 50.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pass                                                 |
| 84 1.5474 9 0.002% 5 0.001% 55.556%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pass                                                 |

| 85  | 1.5647 | 9 | 0.002% | 5 | 0.001% | 55.556% | Pass |
|-----|--------|---|--------|---|--------|---------|------|
| 86  | 1.5820 | 8 | 0.002% | 5 | 0.001% | 62.500% | Pass |
| 87  | 1.5993 | 7 | 0.002% | 5 | 0.001% | 71.429% | Pass |
| 88  | 1.6166 | 7 | 0.002% | 5 | 0.001% | 71.429% | Pass |
| 89  | 1.6339 | 6 | 0.002% | 4 | 0.001% | 66.667% | Pass |
| 90  | 1.6512 | 6 | 0.002% | 3 | 0.001% | 50.000% | Pass |
| 91  | 1.6685 | 5 | 0.001% | 3 | 0.001% | 60.000% | Pass |
| 92  | 1.6858 | 5 | 0.001% | 2 | 0.001% | 40.000% | Pass |
| 93  | 1.7031 | 5 | 0.001% | 2 | 0.001% | 40.000% | Pass |
| 94  | 1.7204 | 5 | 0.001% | 2 | 0.001% | 40.000% | Pass |
| 95  | 1.7377 | 5 | 0.001% | 2 | 0.001% | 40.000% | Pass |
| 96  | 1.7549 | 5 | 0.001% | 2 | 0.001% | 40.000% | Pass |
| 97  | 1.7722 | 5 | 0.001% | 2 | 0.001% | 40.000% | Pass |
| 98  | 1.7895 | 4 | 0.001% | 2 | 0.001% | 50.000% | Pass |
| 99  | 1.8068 | 4 | 0.001% | 2 | 0.001% | 50.000% | Pass |
| 100 | 1.8241 | 4 | 0.001% | 1 | 0.000% | 25.000% | Pass |

# Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

The Hydromodification Management Exhibit must identify:

- □Underlying hydrologic soil group
- □ Approximate depth to groundwater
- Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
- $\Box \mbox{Critical coarse sediment yield areas to be protected}$
- □Existing topography
- Existing and proposed site drainage network and connections to drainage offsite
- □ Proposed grading
- □ Proposed impervious features
- □Proposed design features and surface treatments used to minimize imperviousness
- □Point(s) of Compliance (POC) for Hydromodification Management
- Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions)
- □ Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail)





### **ATTACHMENT 3**

### **Structural BMP Maintenance Information**

This is the cover sheet for Attachment 3.

### Indicate which Items are Included behind this cover sheet:

| Attachment<br>Sequence | Contents                                                                                    | Checklist                                                                                              |
|------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Attachment 3a          | Structural BMP Maintenance Plan<br>(Required)                                               | □Included                                                                                              |
|                        |                                                                                             | See Structural BMP Maintenance<br>Information Checklist on the back of<br>this Attachment cover sheet. |
| Attachment 3b          | Draft Storm Water Control Facilities<br>Maintenance Agreement (SWCFMA)<br>(when applicable) | □Included<br>□Not Applicable                                                                           |

# Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

### Attachment 3a must identify:

□ Specific maintenance indicators and actions for proposed structural BMP(s). This must be based on Section 7.7 of the Storm Water Design Manual and enhanced to reflect actual proposed components of the structural BMP(s)

 $\Box$  How to access the structural BMP(s) to inspect and perform maintenance

□ Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)

□Manufacturer and part number for proprietary parts of structural BMP(s) when applicable

□ Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)

□ Recommended equipment to perform maintenance

□When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management

**Attachment 3b:** For all Structural BMPs, Attachment 3b must include a draft maintenance agreement in the City's standard format (PDP applicant to contact City staff to obtain the current maintenance agreement forms or download from City's website).

### ATTACHMENT 4

City of Escondido PDP Structural BMP Verification for Permitted Land Development Projects

| City of Escondido Storm Water Str                         | uctural BMP Verification Form Page 1 of 4                                                             |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                           | Immary Information                                                                                    |
| Project Name                                              | Escondido 3.4                                                                                         |
| Record ID (e.g., grading/improvement plan number)         | TBD                                                                                                   |
| Project Address                                           | 2222 S. ESCONDIDO BOULEVARD, ESCONDIDO, CA 92025                                                      |
| Assessor's Parcel Number(s) (APN(s))                      | 236-390-02-00 / 236-390-03-00 / 236-390-52-00                                                         |
|                                                           | 236-390-53-00 / 236-390-54-00                                                                         |
| Project Watershed<br>(Complete Hydrologic Unit, Area, and | San Dieguito Watershed, Hodges (905.21), Del Dios                                                     |
| Subarea Name with Numeric Identifier)                     |                                                                                                       |
| Maintenance Notification / Agreement No.                  | TBD                                                                                                   |
| Responsible Part                                          | y for Construction Phase                                                                              |
| Developer's Name                                          | Warmington Residential (Contact: Greg Ocasek)                                                         |
| Address                                                   | 3090 Pullman Street, Costa Mesa, CA 92626                                                             |
| Email Address                                             |                                                                                                       |
| Phone Number                                              | 714-557-5511                                                                                          |
| Engineer of Work                                          | Eric Lissner, P.E. (X Engineering & Consulting, Inc.)                                                 |
| Engineer's Phone Number                                   | 949-522-7100                                                                                          |
|                                                           | for Ongoing Maintenance                                                                               |
| Owner's Name(s)*                                          | TBD                                                                                                   |
| Address                                                   |                                                                                                       |
| Email Address                                             |                                                                                                       |
| Phone Number                                              |                                                                                                       |
|                                                           | nation for principal partner or Agent for Service of the Board or property manager at time of project |

| City of Escondido Storm Water Structural BMP Verification Form Page 2 of 4 |                    |                       |                                            |           |  |  |  |
|----------------------------------------------------------------------------|--------------------|-----------------------|--------------------------------------------|-----------|--|--|--|
| Stormwater Structural Pollutant Control & Hydromodification Control BMPs*  |                    |                       |                                            |           |  |  |  |
| (List all from SWQMP)                                                      |                    |                       |                                            |           |  |  |  |
| Description/Type of<br>Structural BMP                                      | Plan<br>Sheet<br># | Structural<br>BMP ID# | Maintenance<br>Agreement<br>Recorded Doc # | Revisions |  |  |  |
| Modular Wetland Unit                                                       | DMA                | 1                     | TBD                                        |           |  |  |  |
| Underground Storage Facility                                               | DMA                | 2                     | TBD                                        |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
|                                                                            |                    |                       |                                            |           |  |  |  |
| *All Priority Development Projects (PDPs) require a Structural BMP         |                    |                       |                                            |           |  |  |  |

Note: If this is a partial verification of Structural BMPs, provide a list and map denoting Structural BMPs that have already been submitted, those for this submission, and those anticipated in future submissions.

### City of Escondido Storm Structural BMP Verification Form Page 3 of 4

### Checklist for Engineer of Work (EOW) to submit to Field Engineering:

- □ Copy of the final accepted SWQMP and any accepted addendum.
- Copy of the most current plan showing the Storm Water Structural BMP Table, plans/cross-section sheets of the Structural BMPs and the location of each verified asbuilt Structural BMP.
- □ Photograph of each Structural BMP.
- □ Photograph(s) of each Structural BMP during the construction process to illustrate proper construction.
- □ Copy of the approved Structural BMP maintenance agreement and associated security

By signing below, I certify that the Structural BMP(s) for this project have been constructed and all BMPs are in substantial conformance with the approved plans and applicable regulations. I understand the City reserves the right to inspect the above BMPs to verify compliance with the approved plans and Storm Water Ordinance. Should it be determined that the BMPs were not constructed to plan or code, corrective actions may be necessary before permits can be closed.

Please sign your name and seal.

| Professional Engineer's Printed Name: | [SEAL] |
|---------------------------------------|--------|
| Eric Lissner, P.E.                    | _      |
| Professional Engineer's Signed Name:  |        |
|                                       | —      |

Date:

### City of Escondido Storm Water Structural BMP Verification Form Page 4 of 4

### CITY - OFFICIAL USE ONLY:

| Permit #:                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y Inspector:                                                                                                                                                                               |
| te Project has/expects to close:                                                                                                                                                           |
| te verification received from Engineer of Work (EOW):                                                                                                                                      |
| signing below, City Inspector concurs that every noted Structural BMP has been installed pe<br>in.                                                                                         |
| y Inspector's Signature:Date:Date:                                                                                                                                                         |
| PR Environmental Programs:                                                                                                                                                                 |
| te Received from Field Engineering:                                                                                                                                                        |
| vironmental Programs Submittal Reviewer:                                                                                                                                                   |
| vironmental Programs Reviewer concurs that the information provided for the following<br>ructural BMPs is acceptable to enter into the Structural BMP Maintenance verification<br>rentory: |
| List acceptable Structural BMPs:                                                                                                                                                           |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |

Environmental Programs Reviewer's Signature:

Date:

### **ATTACHMENT 5**

### Copy of Plan Sheets Showing Permanent Storm Water BMPs, Source Control, and Site Design

This is the cover sheet for Attachment 5.

Use this checklist to ensure the required information has been included on the plans:

### The plans must identify:

Structural BMP(s) with ID numbers matching Step 6 Summary of PDP Structural BMPs

- □ The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit
- $\Box$  Details and specifications for construction of structural BMP(s)
- Signage indicating the location and boundary of structural BMP(s) as required by City staff
- $\Box$  How to access the structural BMP(s) to inspect and perform maintenance
- □ Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- $\Box$ Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
- □ Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
- $\Box$  Recommended equipment to perform maintenance
- □When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
- □ Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)
- $\Box All BMPs$  must be fully dimensioned on the plans
- □When proprietary BMPs are used, site-specific cross section with outflow, inflow, and model number must be provided. Photocopies of general brochures are not acceptable.
- □ Include all source control and site design measures described in Steps 4 and 5 of the SWQMP. Can be included as a separate exhibit as necessary.

### \*Note: Plan sheets included in this attachment can be full size or half size.

# LEGAL DESCRIPTION

THE TITLE DESCRIPTION AND SCHEDULE B ITEMS HEREON ARE FROM CHICAGO TITLE COMPANY, PRELIMINARY REPORT ORDER NO.: 73718008333-RCM, DATED: AUGUST 23, 2018.

THE LAND REFERRED TO HEREIN BELOW IS SITUATED IN THE CITY OF ESCONDIDO, IN THE COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, AND IS DESCRIBED AS FOLLOWS: PARCEL 1

ALL THAT PORTION OF LOT 2 IN BLOCK 30 OF HOMELAND ACRES ADDITION TO ESCONDIDO NO. 2, IN THE CITY OF ESCONDIDO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP THEREOF NO. 1241, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY, MARCH 11, 1910, DESCRIBED AS FOLLOWS:

BEGINNING AT THE SOUTHWESTERLY CORNER OF THE EASTERLY 182.58 FEET OF THE NORTHERLY 167.07 FEET OF SAID LOT 2 IN BLOCK 30; THENCE ALONG THE WESTERLY BOUNDARY OF THE EASTERLY 182.58 FEET OF SAID LOT 2, NORTH 12°15'19" EAST 88.24 FEET TO A POINT IN THE SOUTHERLY BOUNDARY OF THE NORTHERLY 78.83 OF SAID LOT 2 THENCE ALONG SAID SOUTHERLY BOUNDARY OF SAID NORTHERLY 78.83 FEET, NORTH 77°48'46" WEST 176.92 FEET TO THE WESTERLY BOUNDARY OF THE EASTERLY 359.50 FEET OF SAID LOT 2; THENCE ALONG SAID WESTERLY BOUNDARY, SOUTH 12°15'19" WEST 225.32 FEET TO A POINT IN THE NORTHELRY BOUNDARY OF THE SOUTHERLY 10.00 FEET OF THE NORTHERLY 314.15 FEET OF SAID LOT 2; THENCE ALONG SAID NORTHERLY BOUNDARY SOUTH 77°48'46" EAST 359.50 FEET TO THE EASTERLY BOUNDARY OF SAID LOT 2; THENCE NORTHERLY ALONG SAID EASTERLY BOUNDARY NORTH 12°15'19" EAST 20.00 FEET; THENCE PARALLEL WITH THE NORTHERLY BOUNDARY OF SAID LOT 2 NORTH 77°48'46" WEST 120.00 FEET; THENCE NORTH 15°53'04" WEST 132.69 FEET, MORE OR LESS TO THE POINT OF BEGINNING.

ALSO KNOWN AS PARCEL B OF CERTIFICATE OF COMPLIANCE RECORDED JUNE 25, 2001 AS DOCUMENT NO. 2001-0426059 OF OFFICIAL RECORDS.

PARCEL 2:

THE SOUTHERLY 117.66 FEET OF THE NORTHERLY 196.49 FEET OF LOT 2 IN BLOCK 30 OF HOMELAND ACRES ADDITION TO ESCONDIDO NO. 2, IN THE CITY OF ESCONDIDO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP THEREOF NO. 1241, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY, MARCH 11, 1910.

EXCEPTING THEREFROM THE EASTERLY 359.50 FEET THEREOF.

ALSO EXCEPTING THEREFROM THAT PORTION GRANTED TO THE STATE OF CALIFORNIA IN GRANT DEED RECORDED MAY 6, 1948 IN BOOK 2786, PAGE 11 OF OFFICIAL RECORDS.

ALSO KNOWN AS PARCEL C OF CERTIFICATE OF COMPLIANCE RECORDED JUNE 25, 2001 AS DOCUMENT NO. 2001-0426060 OF OFFICIAL RECORDS.

PARCEL 3:

THE SOUTHERLY 117.66 FEET OF THE NORTHERLY 314.15 FEET OF LOT 2 IN BLOCK 30 OF HOMELAND ACRES ADDITION TO ESCONDIDO NO. 2, IN THE CITY OF ESCONDIDO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP THEREOF NO. 1241, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY, MARCH 11, 1910.

EXCEPTING THEREFROM THE EASTERLY 359.50 FEET THEREOF.

ALSO EXCEPTING THEREFROM THAT PORTION GRANTED TO THE STATE OF CALIFORNIA IN GRANT DEED RECORDED MAY 6, 1948 IN BOOK 2786, PAGE 11 OF OFFICIAL RECORDS.

ALSO KNOWN AS PARCEL D OF CERTIFICATE OF COMPLIANCE RECORDED JUNE 25, 2001 AS DOCUMENT NO. 2001-0426061 OF OFFICIAL RECORDS.

ASSESSOR'S PARCEL NUMBERS: 236-390-52-00, 236-390-53-00, 236-390-54-00

| STREET ADDRESSES: | 2210 S | S. ESCONDIDO | BLVD., | ESCONDIDO, | CA  |
|-------------------|--------|--------------|--------|------------|-----|
|                   | 2222 S | S. ESCONDIDO | BLVD., | ESCONDIDO, | CA  |
|                   | 2224 S | S. ESCONDIDO | BLVD., | ESCONDIDO, | CA. |

### PARCEL A:

ALL THAT PORTION OF LOT 2, BLOCK 30 OF HOMELAND ACRES ADDITION TO ESCONDIDO NO. 2, IN THE CITY OF ESCONDIDO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP THEREOF NO. 1241, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY, MARCH 11, 1910.

COMMENCING AT THE NORTHWESTERLY CORNER OF SAID LOT 2, THENCE EASTERLY ALONG THE NORTHERLY LINE OF SAID LOT, A DISTANCE OF 220.54 FEET TO THE TRUE POINT OF BEGINNING, BEING THE NORTHEASTERLY CORNER OF A PARCEL OF LAND CONVEYED TO EVA PIPER BY DEED DATED APRIL 9, 1941 AND RECORDED IN BOOK 1160, PAGE 493 OF OFFICIAL RECORDS; THENCE CONTINUING EASTERLY ALONG SAID NORTHERLY LINE OF LOT 2, A DISTANCE OF 200 FEET; THENCE SOUTHERLY PARALLEL WITH THE EASTERLY LINE OF SAID LOT 2, A DISTANCE OF 78.83 FEET; THENCE WESTERLY PARALLEL WITH THE NORTHERLY LINE OF SAID LOT, A DISTANCE OF 200.00 FEET; THENCE NORTHERLY ALONG THE EASTERLY LINE OF THE AFOREMENTIONED LAND CONVEYED TO PIPER, A DISTANCE OF 78.83 FEET TO THE TRUE POINT OF BEGINNING.

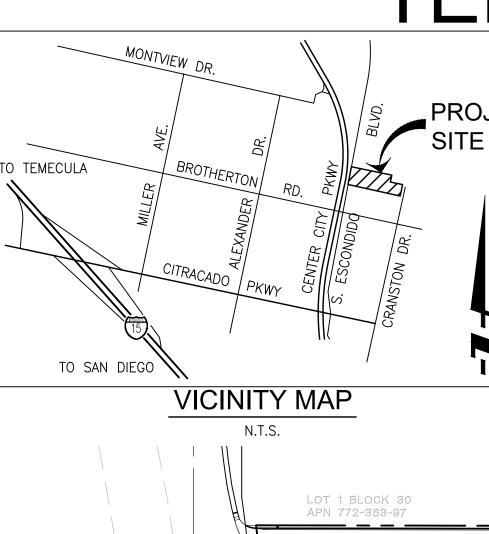
### PARCEL B:

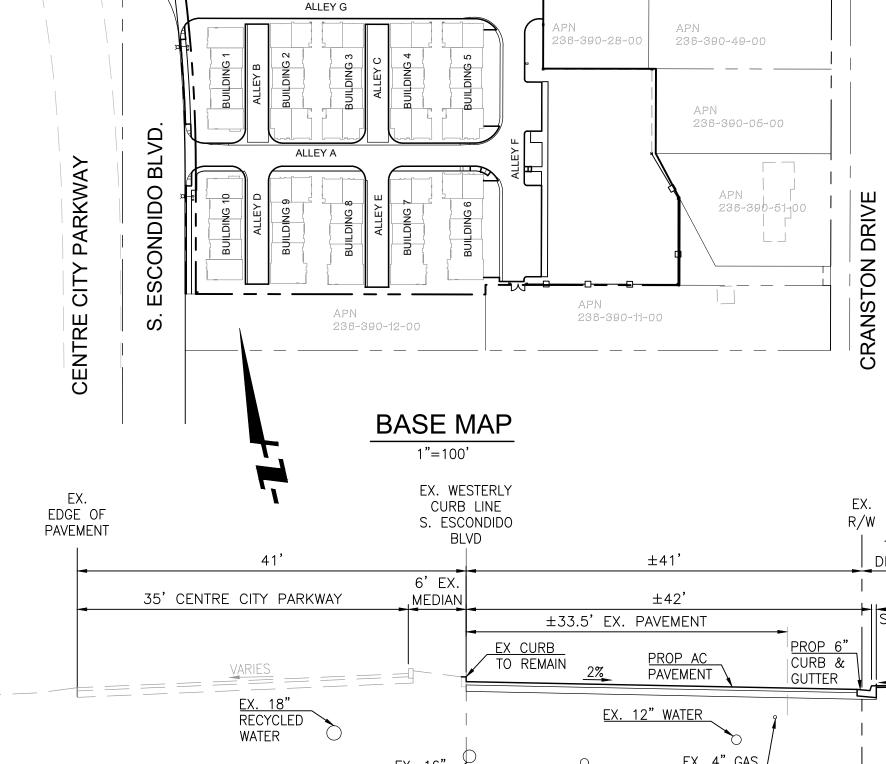
AN EASEMENT FOR ROAD PURPOSES OVER THE NORTHERLY 10 FEET OF THE WESTERLY 220.54 FEET OF SAID LOT 2, BLOCK 30 OF HOMELAND ACRES ADDITION TO ESCONDIDO NO. 2, IN THE CITY OF ESCONDIDO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP THEREOF NO. 1241, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY, MARCH 11, 1910.

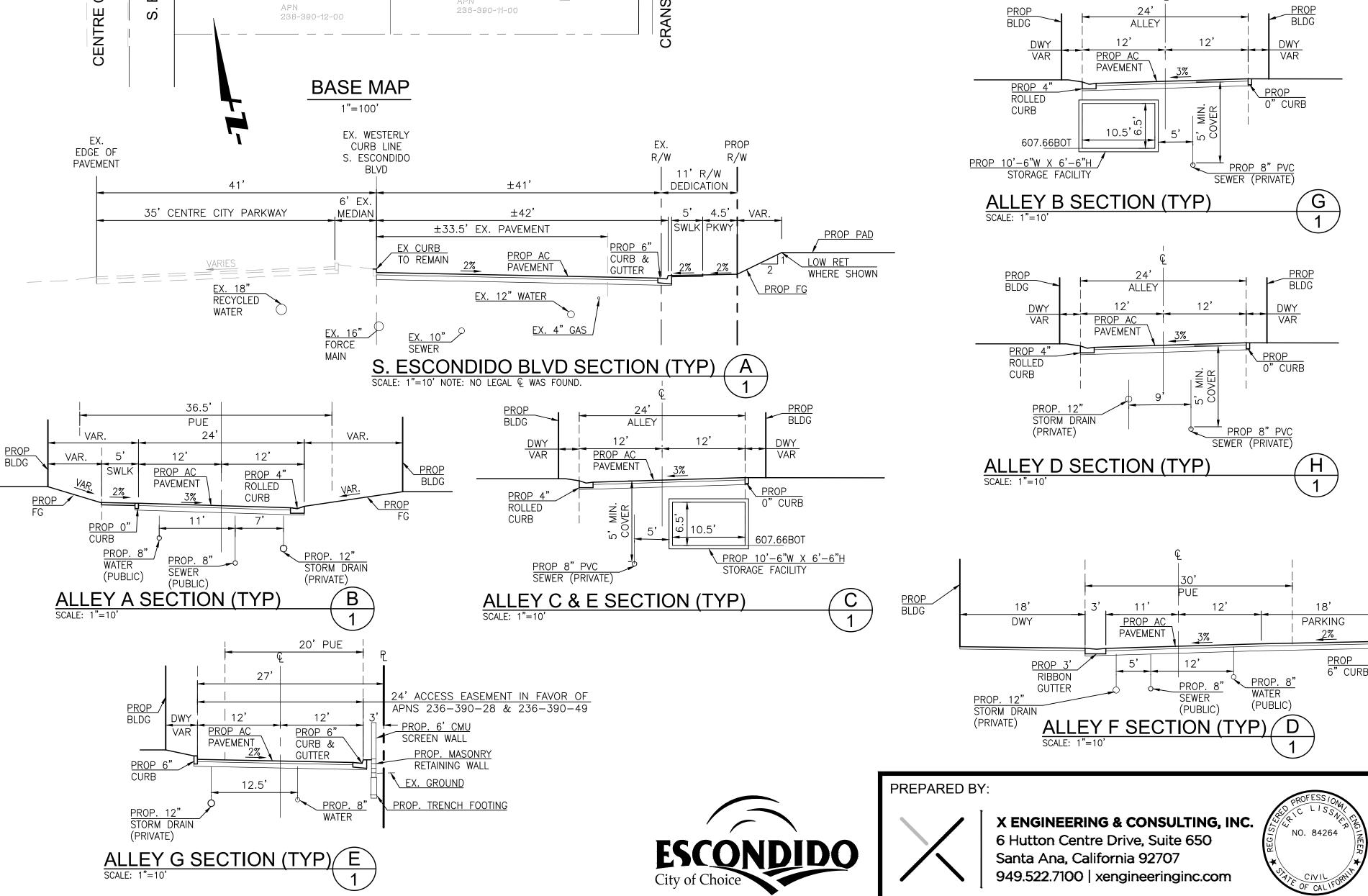
EXCEPTING THEREFROM THAT PORTION THEREOF CONVEYED TO THE STATE OF CALIFORNIA, BY DEED RECORDED FEBRUARY 24, 1948 IN BOOK 2681, PAGE 311 OF OFFICIAL RECORDS.

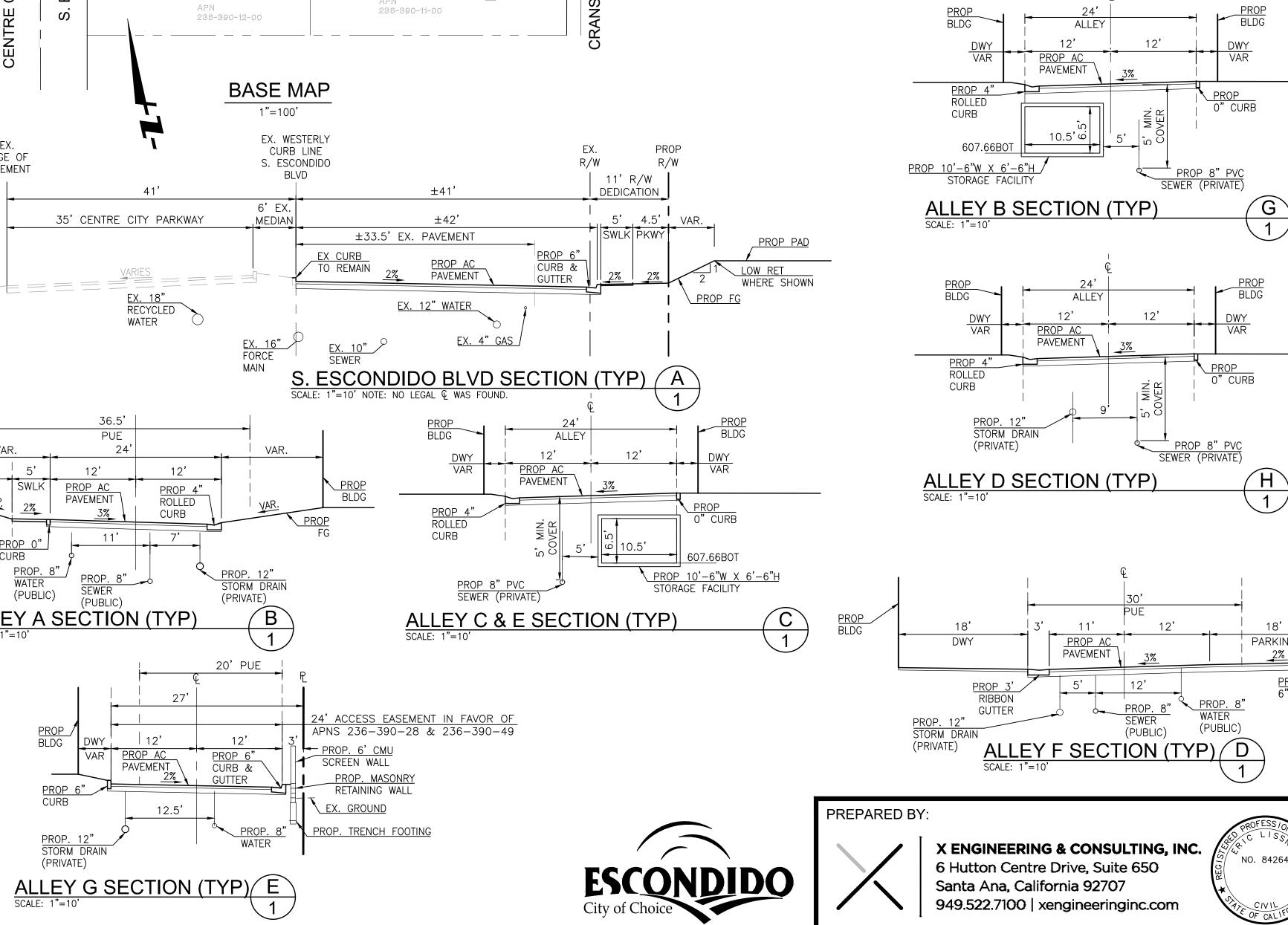
ASSESSOR'S PARCEL NUMBER: 236-390-03-00

STREET ADDRESSES: 2208 S. ESCONDIDO BLVD., ESCONDIDO, CA.


THAT PORTION OF LOT 2, BLOCK 30 OF HOMELAND ACRES ADDITION TO ESCONDIDO, NO. 2, IN THE CITY OF ESCONDIDO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP THEREOF NO. 1241, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY, MARCH 11, 1910, DESCRIBED AS FOLLOWS:


COMMENCING AT THE NORTHWEST CORNER OF SAID LOT 2, BLOCK 30 RUNNING THENCE IN AN EASTERLY DIRECTION ON THE NORTHERLY LINE OF SAID LOT A DISTANCE OF 220.54 FEET TO A POINT IN SAID NORTHERLY LINE; THENCE SOUTHERLY PARALLEL TO THE WESTERLY LINE OF SAID LOT A DISTANCE OF 78.83 FEET; THENCE WESTERLY ON A LINE PARALLEL WITH THE NORTHERLY LINE OF SAID LOT A DISTANCE OF 220.54 FEET TO THE WESTERLY LINE OF SAID LOT; THENCE NORTHERLY A DISTANCE OF 78.83 FEET TO THE POINT OF BEGINNING.


EXCEPTING THEREFROM THAT PORTION THEREOF CONVEYED TO THE STATE OF CALIFORNIA BE DEED RECORDED FEBRUARY 24, 1948 IN BOOK 2681, PAGE 311 OF OFFICIAL RECORDS.


ASSESSOR'S PARCEL NUMBER: 236-390-02-00

STREET ADDRESSES: 2200 S. ESCONDIDO BLVD., ESCONDIDO, CA.









# **TENTATIVE SUBDIVISION MAP** SUB20-0006 .PROJECT

FOR CONDOMINIUM PURPOSES CITY OF ESCONDIDO, CALIFORNIA

# UTILITY PURVEYORS

| GAS & ELECTRIC: | SAN DIEGO GAS AND ELECTRIC<br>800–411–7343 |
|-----------------|--------------------------------------------|
| WATER:          | CITY OF ESCONDIDO<br>761-839-4657          |
| SEWER:          | CITY OF ESCONDIDO<br>760-839-4657          |
| STORM DRAIN:    | CITY OF ESCONDIDO<br>760-839-4880          |
| FIRE:           | CITY OF ESCONDIDO<br>760-839-5400          |

# **OWNER'S CERTIFICATE**

I (WE) HEREBY CERTIFY THAT I (WE) AM (ARE) THE RECORD OWNER OF THE PROPERTY SHOWN ON THE TENTATIVE SUBDIVISION MAP AND THAT SAID MAP SHOWS ALL MY (OUR) CONTIGUOUS OWNERSHIP IN WHICH I (WE) HAVE ANY DEED OR TRUST INTEREST. I (WE) UNDERSTAND THAT MY (OUR) PROPERTY IS CONSIDERED CONTIGUOUS EVEN IF IT IS SEPARATED BY ROADS, STREETS, EASEMENTS, OR RAILROAD RIGHTS-OF-WAY.

APN:

APN:

APN: OWNER:

APN:

AΡΝ·

OWNER:

OWNER:

OWNER:

OWNER:



# **BASIS OF BEARINGS**

THE BASIS OF BEARINGS FOR THIS SURVEY IS THE SOUTH LINE OF LOT 2, BLOCK 30 PER ROS 17273 AND PM 755 ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY. STATE OF CALIFORNIA, SHOWN HEREON AS SOUTH 77°54'35" EAST.

### BENCHMARK

ELEVATIONS FOR THIS SURVEY ARE DERIVED FROM CITY OF ESCONDIDO BENCHMARK NO. 303 DESCRIBED AS: SQUARE CUT ON NW CORNER OF DRAINAGE STRUCTURE S.F. CORNER OF ESCONDIDO BOULEVARD AND BROTHERTON ROAD. NGVD 1929 ELEVATION = 615.60

### **TOPOGRAPHIC SOURCE**

THE TOPOGRAPHY SHOWN HEREON IS BASED ON AERIAL PHOTOGRAPHY DATED 1/20/2019, COMPILED BY ARROWHEAD MAPPING CORPORATION, JOB NUMBER AMC 19-103.

## ASSESSOR PARCEL NUMBERS

### FEMA FLOOD ZONE

THE SITE IS LOCATED IN FLOOD ZONE X, AREA DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN. PER FIRM 06073C1077G.

### **EXISTING SITE INFORMATION**

CITY: EXISTING AND PROPOSED ZONING: SPECIFIC PLAN: PLANNING AREA:

ESCONDIDO SPECIFIC PLAN SOUTH CENTRE CITY SPECIFIC PLAN SOUTHERN ENTRY MIXED USE OVERLAY

# DEVELOPMENT STANDARDS

| BUILDING COVERAGE:       | NONE           |
|--------------------------|----------------|
| FRONT YARD SETBACK:      | 10'            |
| SIDE YARD SETBACK:       | 5'             |
| REAR YARD SETBACK:       | 15'            |
| REQUIRED GARAGE PARKING: | 2 SPACES/DU    |
| REQUIRED GUEST PARKING:  | 0.25 SPACES/DU |

### SITE ADDRESSES

| 2200 | SOUTH | ESCONDIDO | BLVD., | ESCON |
|------|-------|-----------|--------|-------|
| 2208 | SOUTH | ESCONDIDO | BLVD., | ESCON |
| 2210 | SOUTH | ESCONDIDO | BLVD., | ESCON |
| 2222 | SOUTH | ESCONDIDO | BLVD., | ESCON |
| 2224 | SOUTH | ESCONDIDO | BLVD., | ESCON |
|      |       |           |        |       |

## DEVELOPER

WARMINGTON RESIDENTIAL 3090 PULLMAN STREET COSTA MESA, CA 92626 TEL: 714-557-5511 CONTACT: GREG OCASEK

### LOT ACREAGE

GROSS ACREAGE: 3.47 AC 3.39 AC NET ACREAGE: \*ACREAGES EXCLUSIVE OF POTENTIAL BOUNDARY ADJUSTMENTS

### SHEET INDEX

- 1 TITLE SHEET
- 2 EXISTING CONDITION MAP 3 - TENTATIVE SUBDIVISION MAP
- 4 TENTATIVE SUBDIVISION MAP
- 5 UTILITY MAP
- 8 AC SIDEWALK IMPROVEMENTS

# **CIVIL ENGINEER**

6 HUTTON CENTRE DR., SUITE 650,

# **GEOTECHNICAL ENGINEER**

LEIGHTON AND ASSOCIATES, INC. 17781 COWAN IRVINE, CA 92614 TEL: 949.250.1421 CONTACT: JEFF L. HULL, CEG 2056

### **BUILDING AND LOT TABLE**


| BUILDING #  | UNIT #s   | LOT # |
|-------------|-----------|-------|
| 1           | 101-105   | 1     |
| 2           | 201-207   | 1     |
| 3           | 301-307   | 1     |
| 4           | 401-407   | 1     |
| 5           | 501-507   | 1     |
| 6           | 601-606   | 1     |
| 7           | 701-706   | 1     |
| 8           | 801-806   | 1     |
| 9           | 901-906   | 1     |
| 10          | 1001-1005 | 1     |
| TOTAL UNITS | 62        |       |
|             |           |       |

PROJECT PROPOSES CONSOLIDATION OF FIVE PARCELS INTO ONE LOT.

# ESTIMATED GRADING QUANTITIES

|              |                          | CUT (CY)          | FILL (CY) |
|--------------|--------------------------|-------------------|-----------|
|              | RAW                      | 7,450             | 9,290     |
| PROP<br>OPEN | ADDITIONAL<br>EXCAVATION | 24,000            | 24,000    |
| SPACE        | BULKING (5%)*            | 1,572             |           |
|              | TOTALS                   | 33,022            | 33,290    |
|              |                          | 268 CY NET IMPORT |           |
|              |                          |                   |           |

\* TO BE CONFIRMED IN GEOTECHNICAL REVIEW OF GRADING PLANS



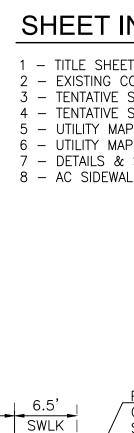
# NATHANIEL JOSEPH WULFF

DAVID SMITH & JEANNIE SMITH

**PROPERTY OWNERSHIP** 

236-390-02-00

236-390-03-00


236-390-52-00 ETEM FRANK J 1985 TRUST A/B, ANN MAIORIELLO

236-390-53-00 ETEM FRANK J 1985 TRUST A/B, ANN MAIORIELLO

236-390-54-00

ETEM FRANK J 1985 TRUST A/B, ANN MAIORIELLO

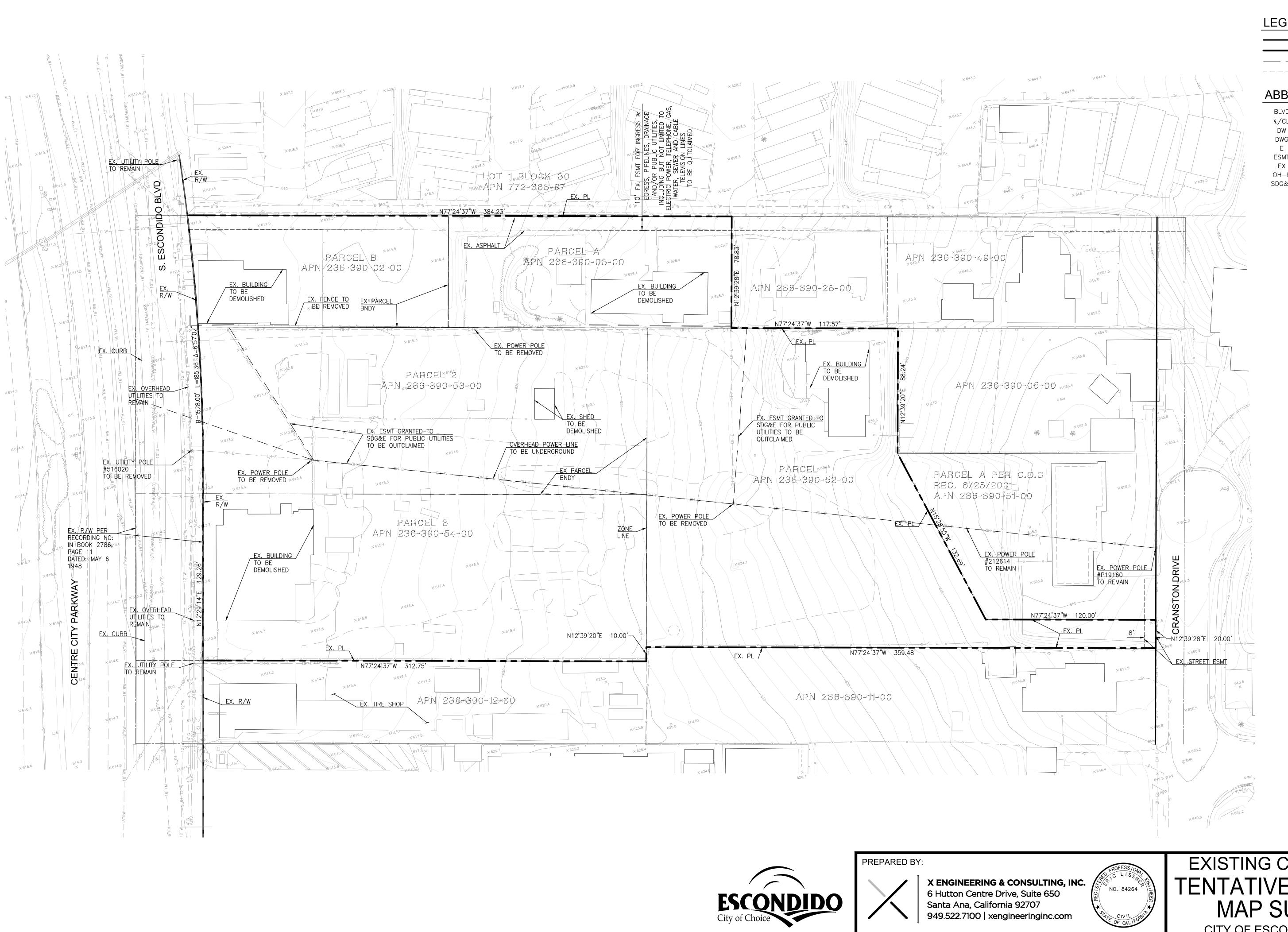
### (SIGNATURE)



SHEET

OF

8

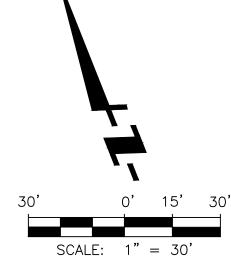

7 – DETAILS & SECTIONS

IDIDO, CA IDIDO, CA. IDIDO, CA IDIDO. CA IDIDO. CA

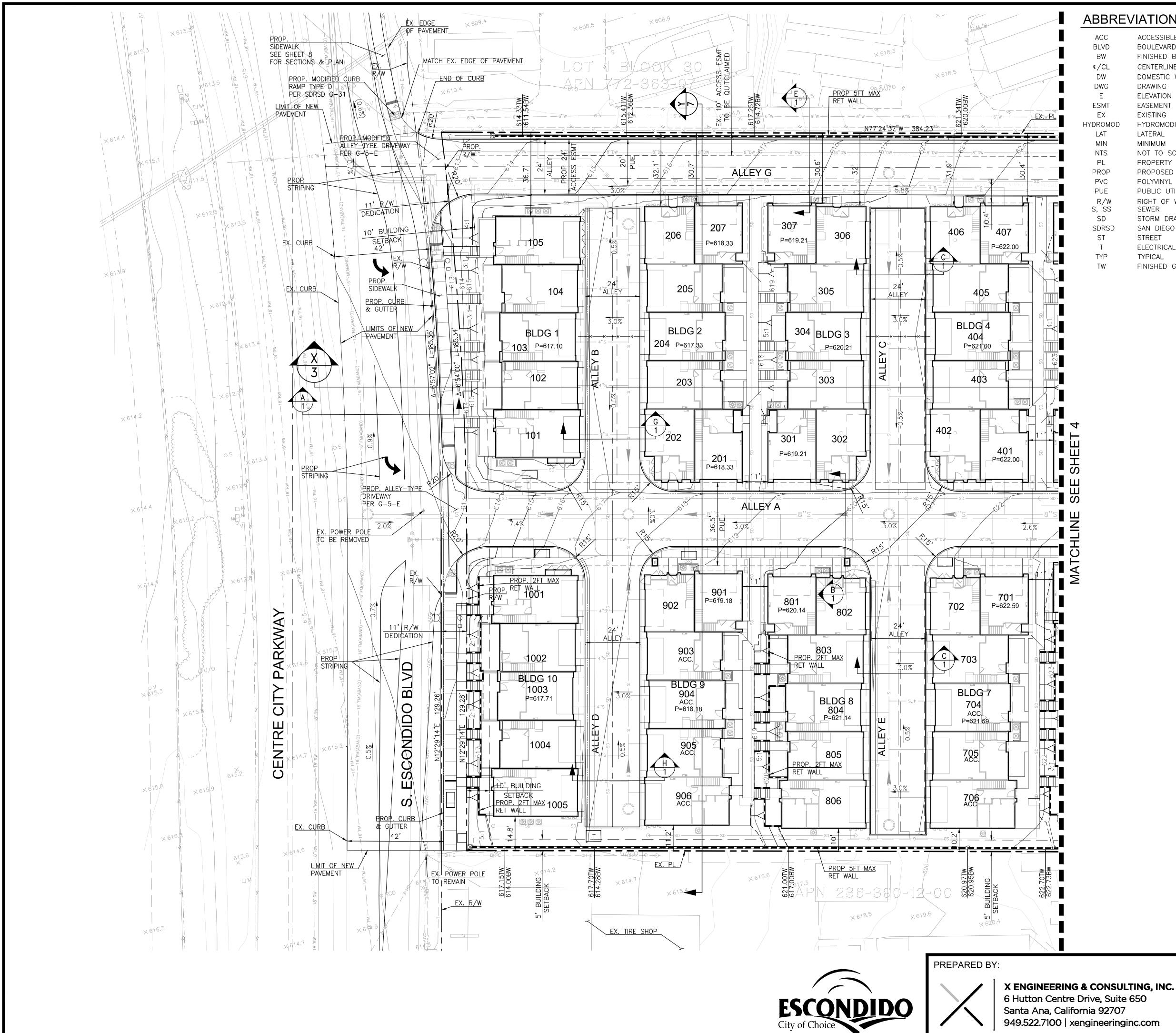
SANTA ANA, CA 92707 TEL: 949-522-7100

X ENGINEERING & CONSULTING, INC.

# CONTACT: ERIC LISSNER, P.E.




# LEGEND


EXISTING RIGHT-OF-WAY EXISTING PROPERTY LINE - ---- STREET CENTERLINE ---- EXISTING EASEMENT

# ABBREVIATIONS

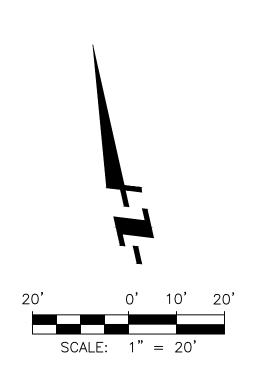
| BLVD  | BOULEVARD                |
|-------|--------------------------|
| €/CL  | CENTERLINE               |
| DW    | DOMESTIC WATER           |
| DWG   | DRAWING                  |
| E     | ELEVATION                |
| ESMT  | EASEMENT                 |
| EX    | EXISTING                 |
| OH-E  | OVERHEAD ELECTRIC        |
| SDG&E | SAN DIEGO GAS & ELECTRIC |
|       |                          |



EXISTING CONDITION MAP SHEET TENTATIVE SUBDIVISION 2 MAP SUB20-0006 OF 8 CITY OF ESCONDIDO, CALIFORNIA



HYDROMOD

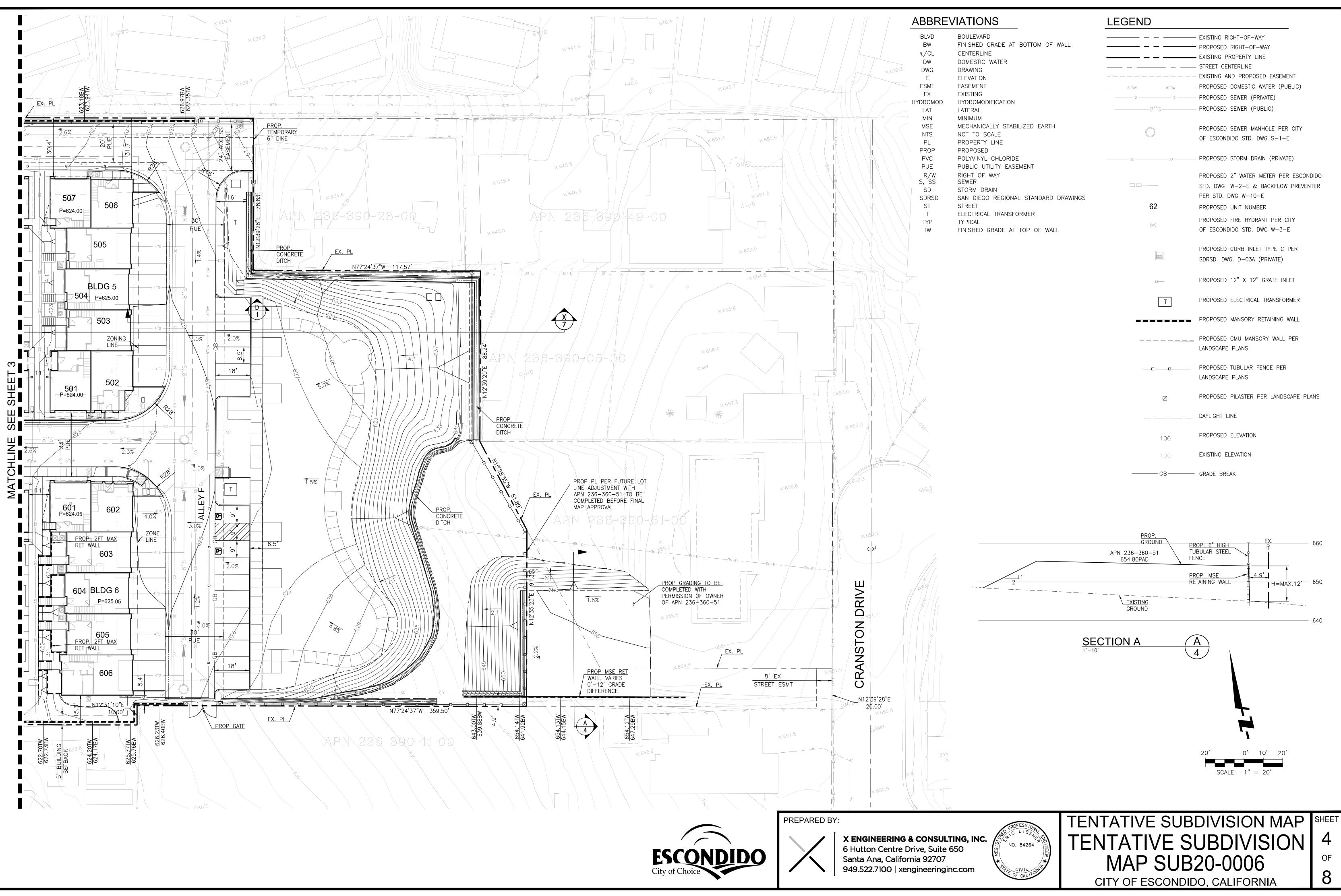

R/W S, SS

SDRSD

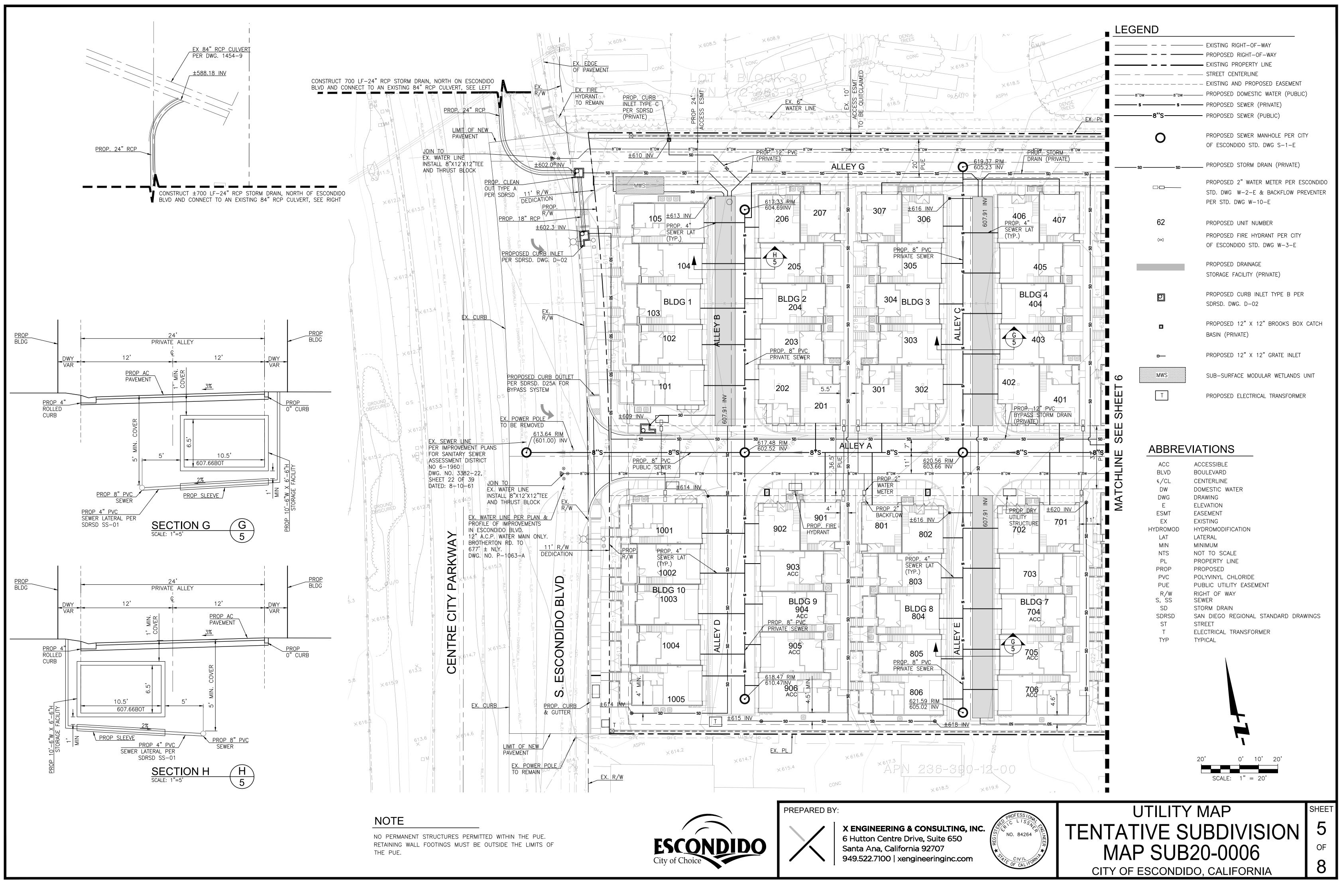
# ABBREVIATIONS

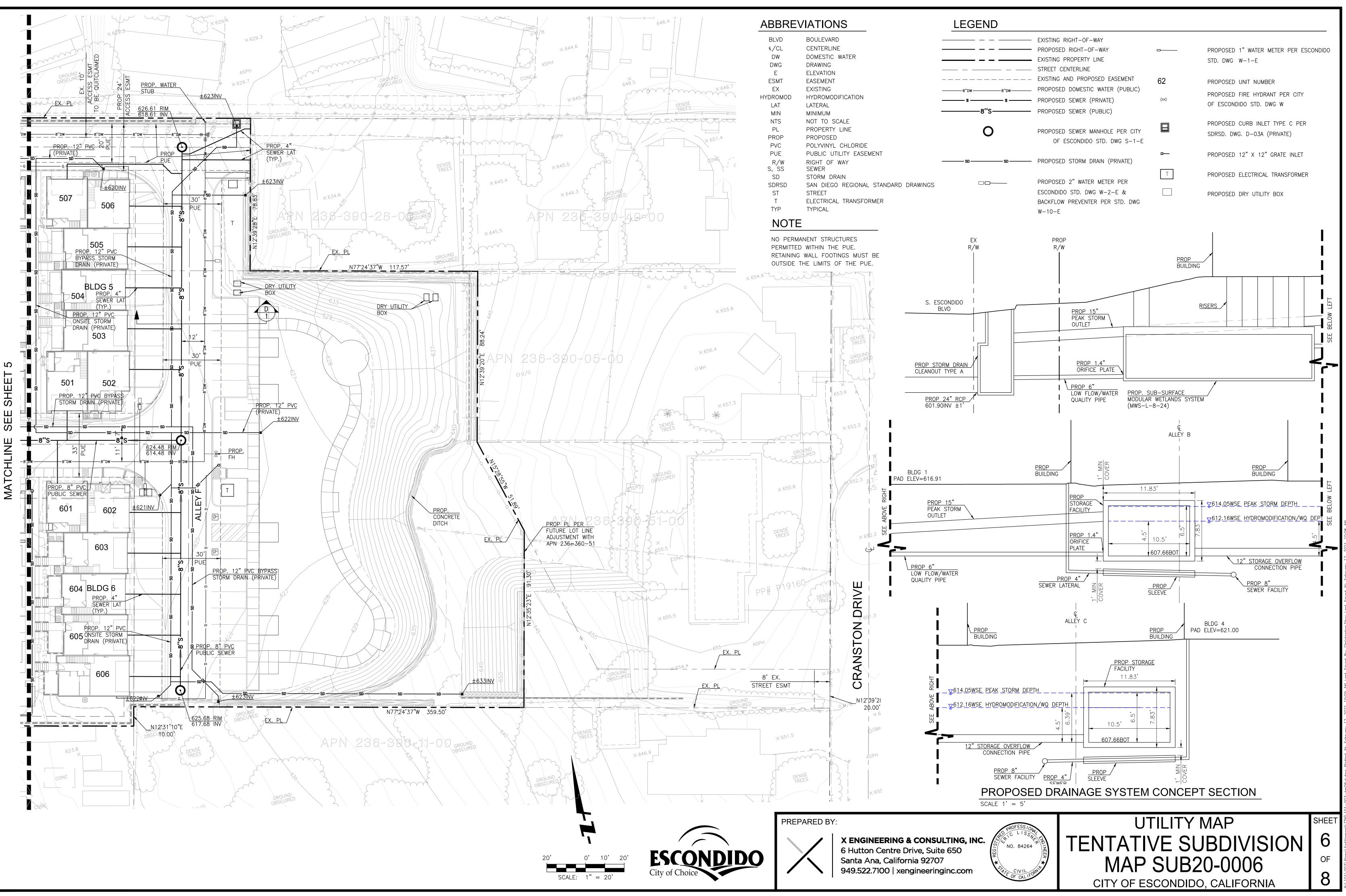
## 

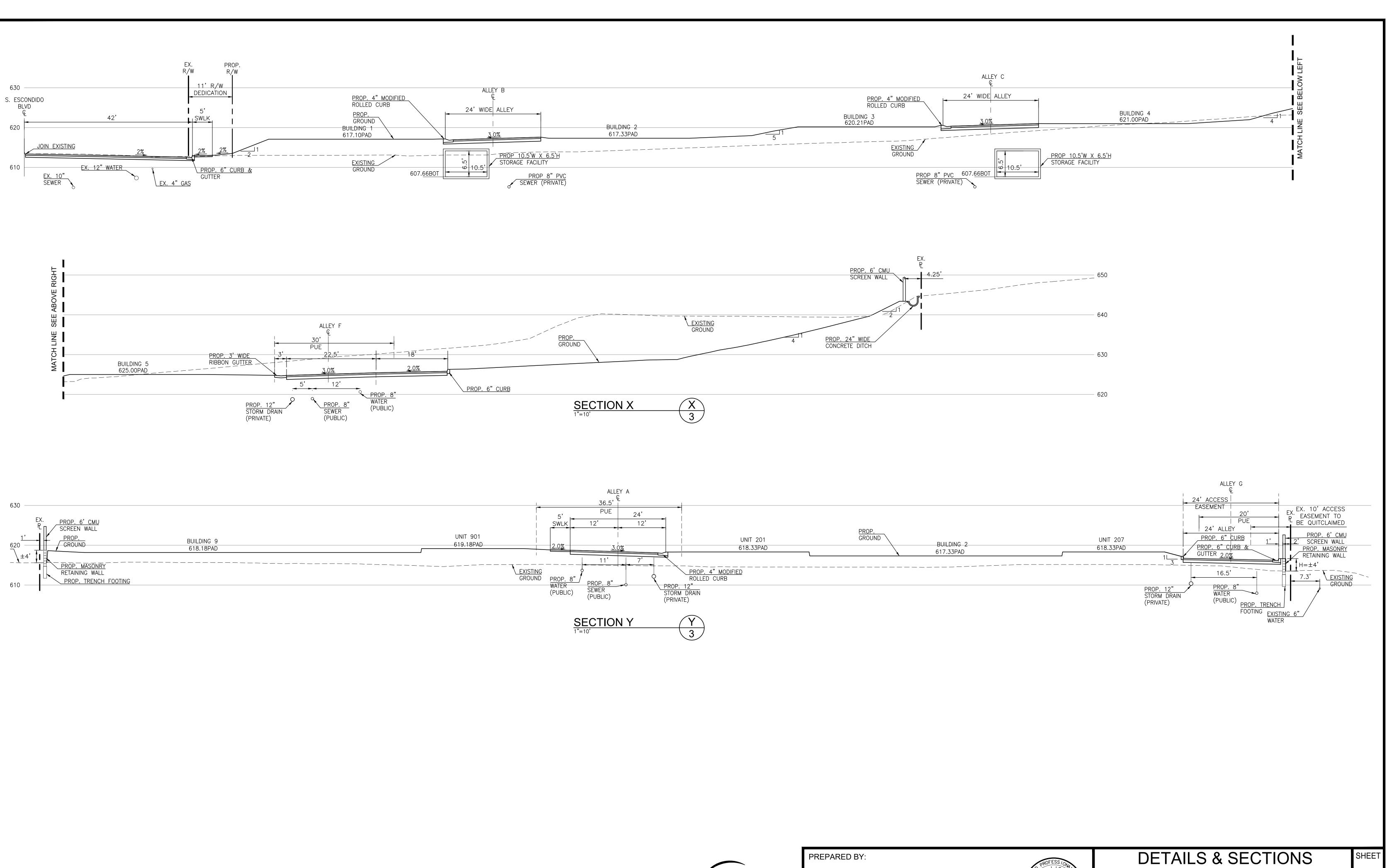
| VIATIONS                             | LEGEND                 |                                       |
|--------------------------------------|------------------------|---------------------------------------|
| ACCESSIBLE                           |                        |                                       |
| BOULEVARD                            |                        | - PROPOSED RIGHT-OF-WAY               |
| FINISHED BOTTOM OF WALL              |                        | - EXISTING PROPERTY LINE              |
|                                      |                        |                                       |
| DOMESTIC WATER                       |                        | – EXISTING AND PROPOSED EASEMENT      |
|                                      |                        |                                       |
| ELEVATION<br>EASEMENT                |                        | PROPOSED DOMESTIC WATER (PUBLIC)      |
| EXISTING                             | S S                    | — PROPOSED SEWER (PRIVATE)            |
| HYDROMODIFICATION                    | 8''S                   |                                       |
| LATERAL                              |                        |                                       |
| MINIMUM                              |                        | PROPOSED SEWER MANHOLE PER CITY       |
| NOT TO SCALE                         |                        |                                       |
| PROPERTY LINE                        |                        | OF ESCONDIDO STD. DWG S-1-E           |
| PROPOSED                             |                        |                                       |
| POLYVINYL CHLORIDE                   |                        | PROPOSED STORM DRAIN (PRIVATE)        |
| PUBLIC UTILITY EASEMENT              |                        |                                       |
| RIGHT OF WAY                         |                        | PROPOSED 2" WATER METER PER ESCONDIDO |
| SEWER                                |                        | STD. DWG W-2-E & BACKFLOW PREVENTER   |
| STORM DRAIN                          |                        | PER STD. DWG W-10-E                   |
| SAN DIEGO REGIONAL STANDARD DRAWINGS | <u></u>                |                                       |
| STREET<br>ELECTRICAL TRANSFORMER     | 62                     | PROPOSED UNIT NUMBER                  |
| TYPICAL                              | 0.0                    | PROPOSED FIRE HYDRANT PER CITY        |
| FINISHED GRADE TOP OF WALL           | $\langle \sim \rangle$ | OF ESCONDIDO STD. DWG W-3-E           |
| THUSTED ORADE TOT OF WALL            |                        |                                       |
|                                      |                        | PROPOSED DRAINAGE                     |
|                                      |                        | STORAGE FACILITY (PRIVATE)            |
|                                      |                        |                                       |
|                                      |                        | PROPOSED CURB INLET TYPE B PER        |
|                                      |                        | SDRSD. DWG. D-02                      |
|                                      |                        |                                       |
|                                      | _                      | PROPOSED 12" X 12" BROOKS BOX CATCH   |
|                                      | <b></b>                |                                       |
|                                      |                        | BASIN (PRIVATE)                       |
|                                      | _                      |                                       |
|                                      |                        | PROPOSED 12" X 12" GRATE INLET        |
|                                      |                        |                                       |
|                                      | MWS                    | SUB-SURFACE MODULAR WETLANDS UNIT     |
|                                      |                        |                                       |
|                                      | Т                      | PROPOSED ELECTRICAL TRANSFORMER       |
|                                      |                        |                                       |
|                                      |                        | PROPOSED MANSORY RETAINING WALL       |
|                                      |                        |                                       |
|                                      |                        | DAYLIGHT LINE                         |
|                                      |                        |                                       |
|                                      | 100                    | PROPOSED ELEVATION                    |
|                                      |                        |                                       |
|                                      | 100                    | EXISTING ELEVATION                    |
|                                      | ——                     | RIDGE LINE                            |







TENTATIVE SUBDIVISION MAP SHEET TENTATIVE SUBDIVISION 3 MAP SUB20-0006 CITY OF ESCONDIDO, CALIFORNIA


OF


8



| EVIATIONS                                     | LEGEND                                                             |                                       |
|-----------------------------------------------|--------------------------------------------------------------------|---------------------------------------|
| BOULEVARD                                     |                                                                    | - EXISTING RIGHT-OF-WAY               |
| FINISHED GRADE AT BOTTOM OF WALL              |                                                                    | - PROPOSED RIGHT-OF-WAY               |
| CENTERLINE                                    |                                                                    | - EXISTING PROPERTY LINE              |
| DOMESTIC WATER                                |                                                                    | - STREET CENTERLINE                   |
| DRAWING<br>ELEVATION                          |                                                                    | - EXISTING AND PROPOSED EASEMENT      |
| EASEMENT                                      |                                                                    | PROPOSED DOMESTIC WATER (PUBLIC)      |
| EXISTING                                      | 8''DW8''DW                                                         |                                       |
| D HYDROMODIFICATION                           | S S                                                                | - PROPOSED SEWER (PRIVATE)            |
| LATERAL                                       | 8''S                                                               | – PROPOSED SEWER (PUBLIC)             |
| MINIMUM                                       |                                                                    |                                       |
| MECHANICALLY STABILIZED EARTH                 |                                                                    | PROPOSED SEWER MANHOLE PER CITY       |
| NOT TO SCALE                                  | $\bigcirc$                                                         | OF ESCONDIDO STD. DWG S-1-E           |
| PROPERTY LINE                                 |                                                                    |                                       |
|                                               |                                                                    | PROPOSED STORM DRAIN (PRIVATE)        |
| POLYVINYL CHLORIDE<br>PUBLIC UTILITY EASEMENT |                                                                    | - PROPOSED STORM DRAIN (PRIVATE)      |
| RIGHT OF WAY                                  |                                                                    | PROPOSED 2" WATER METER PER ESCONDIDO |
| SEWER                                         |                                                                    |                                       |
| STORM DRAIN                                   |                                                                    | STD. DWG W-2-E & BACKFLOW PREVENTER   |
| SAN DIEGO REGIONAL STANDARD DRAWINGS          |                                                                    | PER STD. DWG W-10-E                   |
| STREET                                        | 62                                                                 | PROPOSED UNIT NUMBER                  |
| ELECTRICAL TRANSFORMER                        |                                                                    | PROPOSED FIRE HYDRANT PER CITY        |
| TYPICAL                                       | $\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ | OF ESCONDIDO STD. DWG $W-3-E$         |
| FINISHED GRADE AT TOP OF WALL                 |                                                                    | OF ESCONDIDO STD. DWG W-3-E           |
|                                               |                                                                    | PROPOSED CURB INLET TYPE C PER        |
|                                               |                                                                    | SDRSD. DWG. D–03A (PRIVATE)           |
|                                               |                                                                    |                                       |
|                                               |                                                                    | PROPOSED 12" X 12" GRATE INLET        |
|                                               | D                                                                  |                                       |
|                                               | ГТ                                                                 | PROPOSED ELECTRICAL TRANSFORMER       |
|                                               |                                                                    |                                       |
|                                               |                                                                    | PROPOSED MANSORY RETAINING WALL       |
|                                               |                                                                    |                                       |
|                                               |                                                                    | PROPOSED CMU MANSORY WALL PER         |
|                                               |                                                                    | LANDSCAPE PLANS                       |
|                                               |                                                                    |                                       |
|                                               |                                                                    | PROPOSED TUBULAR FENCE PER            |
|                                               |                                                                    |                                       |
|                                               |                                                                    | LANDSCAPE PLANS                       |
|                                               |                                                                    |                                       |
|                                               | $\boxtimes$                                                        | PROPOSED PILASTER PER LANDSCAPE PLANS |
|                                               |                                                                    |                                       |
|                                               |                                                                    | DAYLIGHT LINE                         |
|                                               |                                                                    |                                       |
|                                               | 100                                                                | PROPOSED ELEVATION                    |
|                                               |                                                                    |                                       |







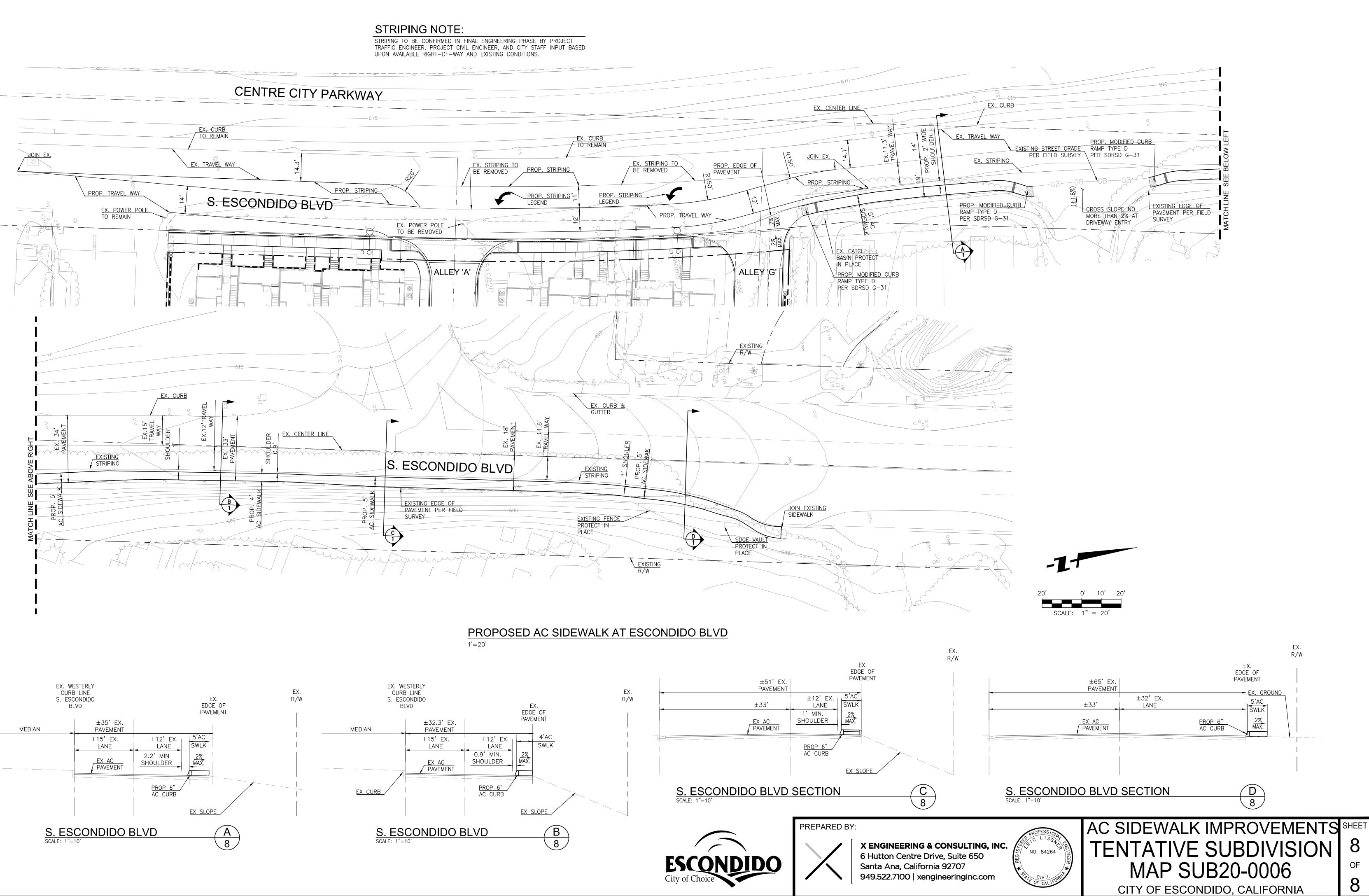


PREPARED BY:

X ENGINEERING & CONSULTING, INC. 6 Hutton Centre Drive, Suite 650 Santa Ana, California 92707 949.522.7100 | xengineeringinc.com



7


OF

8

TENTATIVE SUBDIVISION

MAP SUB20-0006

CITY OF ESCONDIDO, CALIFORNIA

