CHAPTER 4.0
EFFECTS FOUND NOT TO BE SIGNIFICANT

As allowed by Section 15128 of the CEQA Guidelines, effects found not to be significant need not be discussed in detail in an EIR. Rather, a brief discussion as to why various possible effects of a project were determined not to be significant is appropriate. The following five issue areas were determined, based on preliminary review, not to have a significant effect on the environment: Agricultural Resources, Land Use, Mineral Resources, Population and Housing, and Public Services. The rationale for these conclusions is outlined below.

4.1 AGRICULTURAL RESOURCES

The project site is not currently used for agricultural purposes; rather it is open, generally undeveloped land due in part to the rocky slopes, rock outcroppings, and dense vegetation found in the vicinity. The California Department of Conservation Farmland Mapping and Monitoring Program (FMMP) designates the project vicinity and majority of surrounding area as Other Land. However, there is some land north of the project site along and to the north of Lake Wohlford Road that is designated as Farmland of Local Importance (Department of Conservation 2014). The land with this designation is not currently in agricultural production. The County of San Diego zones the project site as A72 (General Agriculture) and surrounding areas as A70 (Limited Agriculture) (County of San Diego 2014b), both of which are common zoning for the large areas of undeveloped land in the vicinity. The Escondido General Plan, Resource Conservation Element does not designate the Lake Wohlford vicinity or surrounding area as an Agricultural Area (City of Escondido 2012a). The project site is not within a Williamson Act Contract (Department of Conservation 2013). The project site is not within a timberland or forest land zone.

A portion of the Lake Wohlford Marina is mapped with the FMMP designation Farmland of Local Importance. However, this appears to be an outdated mapping anomaly, as this land is not used for agriculture, and project activities on this land would not be considered an impact on agricultural resources. The relocation of the dam would not impact agricultural resources, conflict with the agricultural zoning of the area, or preclude the use of surrounding land for agricultural uses. The MND for the Oakvale Road Realignment and Improvement Project found no impact to agricultural resources as a result of that project. Therefore, the project would not have a significant effect on agricultural resources.
4.2 LAND USE AND PLANNING

The project site is immediately downstream (southwest) of Lake Wohlford on unincorporated land owned by the City. The Escondido General Plan identifies the project site as Public Land/Open Space with Rural I residential land use designated in surrounding areas (City of Escondido 2012a). The County’s North County Metropolitan Subregional Plan shows the site mapped as Public/Semi-Public Facilities with Rural Lands (RL-40) surrounding the area (County of San Diego 2011d). The North County Metro Resource Conservation Area Map also shows areas south of Lake Wohlford designated as the Bottle Peak-Lake Wohlford Resource Conservation Area and areas to the northwest designated as the Valley Center Ridge Resource Conservation Area (County of San Diego 2011d). The project site is surrounded by lands within the planning area of the North County Subregion of the County of San Diego’s MSCP, which remains in draft form and does not govern project activities. The project site is included within the City of Escondido’s MHCP Subarea. The Escondido MHCP Subarea Plan, which is also in draft form, includes the incorporated city limits plus approximately 3,000 acres owned by the City in the unincorporated areas, such as Lake Wohlford.

Implementation of the project would relocate the existing Lake Wohlford Dam approximately 200 feet downstream from its current location, in an area currently used for maintenance access. Because of the existing dam, the project site is not developed and the construction of the replacement dam would not alter land uses in a way that could divide an established community or conflict with planning documents or policies as the dam and reservoir are existing elements of the area and the project would only modify the location within a very nearby area. The MND for the Oakvale Road Realignment and Improvement Project found no significant impact to land use as a result of that project. Therefore, the project would not have a significant effect related to land use.

4.3 MINERAL RESOURCES

According to the USGS Mineral Resources Data System, past and present mining operations and prospect areas are located in the general vicinity of the project (Lake Wohlford Road Pit [Wickoff Quarry], A.M.E. Quarry, Bear Deposit, Langer Deposit). Mineral extraction from these locations generally includes crushed stone (USGS 2014). The project site is not within a Mineral Resource Zone as designated by the County. Areas west of the project are designated as Mineral Resource Zone 3 (MRZ-3) (County of San Diego 2011e). MRZ-3 indicates areas containing mineral deposits whose significance cannot be evaluated from available data. The existing Escondido General Plan does not include a designation for mineral resources or extraction operations (City of Escondido 2012a).
Mining or mineral extraction does not currently take place within the project site or immediate vicinity. It is likely that some of the aggregate needed for project construction may come from project excavation operations, as feasible. This on-site reuse would provide high-quality aggregate necessary for the project and minimize the need for hauling rock material on- and/or off-site. The shifting of the dam from its current location to the proposed site 200 feet downstream would not substantially change the existing availability of mineral resources that would be of value to the region and residents of California or result in the loss of availability of a locally important mineral resource recovery site delineated on a land use plan. The project would not alter or hinder existing or future mineral extraction operations. The MND for the Oakvale Road Realignment and Improvement Project found no impact to mineral resources as a result of that project. Therefore, the project would not have a significant effect on mineral resources.

4.4 PALEONTOLOGICAL RESOURCES

Evaluation of sensitivity for potential presence of paleontological resources in unincorporated County land is provided in the County of San Diego Guidelines for Determining Significance, Paleontological Resources (County of San Diego 2009). As shown in Figure 2 of the referenced guidelines, the project area is mapped as having a sensitivity level of “none.” Therefore, there would be no impact on paleontological resources.

4.5 POPULATION AND HOUSING

The project would not displace existing housing or people as there are no residential developments within the project site or immediate vicinity. The project does not include the development of new housing or any population-generating uses. Construction of the project is anticipated to take approximately 32 months and could employ up to approximately 88 workers at a time (two daily shifts of up to 44 workers); however, the workforce is expected to be drawn from the local region and would not cause a substantial influx of new population growth to the area. The project would result in increased capacity of the reservoir, which is used in part by the City for municipal water supply. However, the increase in capacity would be a return to historic levels necessary to serve existing and planned City needs and not be an infrastructure expansion that could induce substantial new population growth. The MND for the Oakvale Road Realignment and Improvement Project found no impact to population and housing as a result of that project. Therefore, the project would not have a significant effect on population and housing in the area.
4.6 PUBLIC SERVICES

Emergency services are provided to the project site by the Valley Center Fire Protection District (fire and medical) and Valley Center Sheriff’s Substation (police), both of which are located approximately 4.5 miles northeast of the project site on North Lake Wohlford Road. Construction and operation of the project would not generate a need for increased emergency services or new facilities as the new dam would replace the existing seismically unstable dam and would not create a new or substantially altered use of the area or reservoir that could generate an increase in the need for services or effect the ability of the service providers to maintain adequate service ratios. The traffic control plan required by the City for construction activities would outline all requirements to ensure that emergency access is maintained at all times and project construction would not impact acceptable response times and would require coordination and notification of emergency service providers.

Other public services such as schools, parks, and other public services and facilities would not experience an increase in demand or need for services as the project would not generate population growth or other community changes that might increase demand or availability of those public services or create the need for new or expanded facilities. The MND for the Oakvale Road Realignment and Improvement Project found no impact to public services as a result of that project. Therefore, the project would not have a significant effect on public services.

4.7 UTILITIES AND SERVICE SYSTEMS

Lake Wohlford is an important component of the City’s initial municipal water supply, serving as a storage reservoir where discharged water is treated and distributed to the City’s municipal customers. As described in Chapter 2, due to seismic stability concerns with the existing dam, the City had to decrease the reservoir’s capacity to approximately 40% of its prior capacity. Additionally, most of the water released from Lake Wohlford passes through the Wohlford Penstock to the Bear Valley HGF and generates electricity that is sold to San Diego Gas & Electric.

Construction of the replacement dam would occur while the existing dam is still in place; thus, any utilities that need to be relocated in association with the replacement dam would be installed prior to demolition of the existing dam and minimal impacts to utilities and service systems are anticipated. Water supply would be necessary during construction, most specifically during the concrete dam construction. However, the RCC method of placing concrete minimizes water content. Demand for water during construction activities would cease at the end of the construction period. Once operational, the project would not require a substantial volume of water as project components are static infrastructure features. The project would not result in the
need for new or expanded water entitlements, but rather would regain the Lake Wohlford reservoir’s lost water storage capability for the City’s municipal water system. The replacement dam would provide a seismically safe and long-term (expected lifespan of 100 years) component of the City’s water infrastructure system. Discharged water would continue to pass through the Wohlford Penstock to the Bear Valley HGF for electricity generation, similar to existing conditions. Because the permanent facilities would basically replace similar existing facilities (i.e., the existing dam and Oakvale Road), there would not be a substantial difference in the volume of runoff generated by the project or a need for increased stormwater treatment facilities. Thus, the project would not have a significant effect on utilities and service systems.

Approximately 59,516 cubic yards of excavated earth and rock from the dam foundation area would be hauled off site, and Oakvale Road reconstruction would require approximately 56,000 cubic yards of material to be removed from the project site. It is anticipated that this material would be transported to a local quarry for processing and resale. Due to the quality of the rock, it is not expected to be disposed of in a landfill. Material from demolition of the existing dam, approximately 37,100 cubic yards would be hauled off-site for reuse, rather than disposal in a landfill. Thus, the project would not result in impacts to local landfills.
This page intentionally left blank.
CHAPTER 5.0
CUMULATIVE IMPACTS

CEQA Guidelines require a discussion of cumulative impacts of a project “when the project’s incremental effect is cumulatively considerable” (2011 CEQA Guidelines, Section 15130). As defined by Section 15065 (a)(3) “cumulatively considerable” means that the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects (2011 CEQA Guidelines, Section 15065 (a)(3)). These cumulative impacts are defined as “two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts” (CEQA Guidelines Section 15355).

The discussion of cumulative impacts is further guided by CEQA Guidelines Section 15130(a) and (b), as summarized below:

- An EIR shall not discuss impacts which do not result in part from the project evaluated in the EIR.
- When the cumulative effect of the project’s incremental contribution and the effect of the other projects are not significant, the EIR shall briefly indicate why and not discuss it further.
- An EIR may identify a significant cumulative effect, but determine that a project’s contribution is less than significant. That conclusion could result if the project is required to implement or fund its fair share of a mitigation measure designed to alleviate the cumulative impact.
- The discussion of cumulative impacts shall reflect the possibility of occurrence and severity of the impacts and focus on cumulative impact to which the identified other projects could contribute.

In general, effects of a particular action or a group of actions would be considered cumulative impacts under the following conditions:

- effects of several actions in a common location,
- effects are not localized (i.e., can contribute to effects of an action in a different location),
- effects on a particular resource are similar in nature (i.e., they affect the same specific element of a resource)
5.0 Cumulative Impacts

5.1 AFFECTED ENVIRONMENT

Information on past, present, and reasonably foreseeable probable future projects, and identified project impacts were gathered via the County of San Diego Department of Planning and Land Use and the City of Escondido Planning Division through review of available environmental documentation (conducted in 2015, following publication of the project NOP in April 2015). The initial radius used for conducting the cumulative project research was approximately 5 miles surrounding the project site, which includes parts of the City of Escondido and the community of Valley Center. In addition to this search radius, additional area for traffic analysis and hydrology/water quality analysis was considered. For the purposes of the cumulative impact analysis for construction traffic impacts and construction-traffic-related air quality and noise impacts, the cumulative study area also includes the roads identified as material haul routes for the Oakvale Road and dam construction, as discussed in Section 3.11, Traffic/Circulation. The analysis of cumulative water quality impacts focused on the entire Escondido Creek hydrologic area.

5.2 PRESENT AND REASONABLY FORESEEABLE PROJECTS

Table 5-1 shows the cumulative projects considered in this analysis. The discussion of present and reasonably foreseeable probable projects focuses on those development projects that could occur concurrently with the proposed project. Although precise construction timelines are unknown for many of these projects, it is highly unlikely that all of the projects would occur simultaneously. However, in the interest of a conservative analysis, the potential for simultaneous construction on all projects was considered.

5.3 CUMULATIVE IMPACT ANALYSIS

As required by CEQA, the discussion below identifies the potential for cumulative impacts and discusses the project’s contribution on these impacts. In the discussion below, “proposed project” is used to refer to the project analyzed in this EIR, to differentiate between cumulative projects.

5.3.1 Aesthetics

None of the cumulative projects are located in the same viewshed as the project analyzed in this EIR. The topography of Lake Wohlford and its immediate surroundings is self-contained, as it is encircled by peaks and relatively steep slopes. Due to this relative isolation, no viewsheds affected by the project would simultaneously be affected by any other project under consideration in this section. Therefore, no cumulative impact would result related to aesthetics.
Table 5-1
Present and Reasonably Foreseeable Projects

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Lead Agency</th>
<th>Project Status</th>
<th>Location/ APN</th>
<th>Project Description</th>
<th>Potential Cumulative Environmental Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calvin Christian Schools</td>
<td>City of Escondido</td>
<td>A Negative Declaration for the project was issued on 5/4/15, and received no comments from the public or from other agencies. A City of Escondido Planning Commission staff report recommended the approval of the modification of the applicant’s Conditional Use Permit on 6/9/15.</td>
<td>200 North Broadway, Escondido. APNs: 224-120-54; 224-120-55.</td>
<td>The project includes the construction of a new 15,515-square-foot auditorium on the 13.17-acre campus of Calvin Christian High/Middle School. Construction would require a modification of the property’s existing Conditional Use Permit.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Centerpointe 78 Commercial Center</td>
<td>City of Escondido</td>
<td>The City of Escondido issued a Notice of Preparation for an Environmental Impact Report on 6/4/2014. As of 7/8/15, the Screencheck Environmental Impact Report was under review by the City.</td>
<td>925 North Broadway, Escondido. APNs: 229-121-1300; 229-121-1400; 229-121-1200; 229-121-1100.</td>
<td>The project proposes to replace a former automotive dealership located on the northwest corner of Highway 78 and North Broadway. The dealership would be demolished and replaced with a local grocery store and a quick-service restaurant.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>El Caballo Park Master Plan</td>
<td>City of Escondido</td>
<td>A draft of the Park Master Plan was released on 2/11/14. The Master Plan was accepted by the Escondido City Council on 3/27/2014, but the preparation of an Environmental Impact Report has not yet commenced.</td>
<td>Located to the west of Save a Life Way, southwest of the Escondido Humane Society.</td>
<td>The project includes the improvement of preexisting equestrian facilities on the site, as well as the creation of additional community features and additional trail connections to the trails of Daley Ranch and other adjacent open spaces.</td>
<td>Biological resources, recreation, and hydrology/water quality, as well as construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Pickering Annexation</td>
<td>City of Escondido</td>
<td>A Mitigated Negative Declaration was adopted on 9/11/14. The annexation was approved by the San Diego Local Agency Formation Commission (LAFCO) on 2/2/15.</td>
<td>2056 N. Ash Street, Escondido, and adjacent vacant properties. APNs: 224-142-10; 224-142-26, 27, 28.</td>
<td>Annexation of approximately 5.7 acres involving development of a 13-lot Tentative Tract Map on 4.2 acres. In addition, an existing structure will be demolished and three adjacent properties annexed.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Project Name</td>
<td>Lead Agency</td>
<td>Project Status</td>
<td>Location/ APN</td>
<td>Project Description</td>
<td>Potential Cumulative Environmental Impacts</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Stanley Avenue Subdivision</td>
<td>City of Escondido</td>
<td>An Initial Study/Mitigated Negative Declaration was submitted to the City in April 2014.</td>
<td>836 Stanley Avenue, Escondido. APN: 224-142-04.</td>
<td>The project includes construction of 16 new single-family detached residences on a currently vacant 4.6 acre site, as well as improvement of adjacent streets and storm water management facilities.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Zenner Development</td>
<td>City of Escondido</td>
<td>An Initial Study/Mitigated Negative Declaration was circulated for public review from 1/30/15 to 2/18/15.</td>
<td>Located to the north of Vista Avenue, immediately to the east and west of Ash Street. APNs: 224-130-07, 08, 12, 13; 224-142-20.</td>
<td>The project consists of two elements: a development and an annexation. The development consists of a 43-lot subdivision on approximately 14 acres, and the annexation area includes one developed residential parcel and three street segments.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Westminster Seminary</td>
<td>City of Escondido</td>
<td>An application to modify the existing Conditional Use Permit was submitted in November 2014.</td>
<td>1725 Bear Valley Pkwy, Escondido APN: 234-030-3400.</td>
<td>The project includes construction of eight two-story buildings containing 64 units of multifamily housing for graduate students, as well as two larger buildings (11,147 square feet and 2,200 square feet) on the 18-acre campus.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Valley Center Road Widening Project</td>
<td>City of Escondido</td>
<td>Mostly complete; section of Beven Drive is currently in planning phase.</td>
<td>Valley Center Road, Beven Drive north to City boundary.</td>
<td>Widening Valley Center Road to two lanes in each direction.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Butterfield Trails Development</td>
<td>County of San Diego</td>
<td>Tentative Map was approved by San Diego County planning commission on 5/17/13.</td>
<td>Sunday Drive at Valley Center Road. 189-012-59, 60, 61, 62; 189-281-18.</td>
<td>The project is a Tentative Map and Major Use Permit for a 71-lot residential development on approximately 60 acres, including 27 acres of designated open space.</td>
<td>Biological resources, as well as construction-related traffic, noise, and air quality.</td>
</tr>
<tr>
<td>Bear Valley Parkway Widening Project</td>
<td>County of San Diego</td>
<td>Construction on the project began in August 2014 and is expected to continue through the summer of 2016.</td>
<td>Bear Valley Parkway, between SR-78 and Boyle Avenue.</td>
<td>The project consists of widening the existing two-lane road to four lanes. Improvements such as bike lanes/sidewalks, landscaped parkways, and drainage improvements are also included in the project.</td>
<td>Construction-related traffic, noise, and air quality.</td>
</tr>
</tbody>
</table>
5.3.2 **Air Quality**

Due to the inherently cumulative nature of regional air quality impact analysis, cumulative impacts from the proposed project are addressed at length under Criterion 3 in Section 3.2, Air Quality. A significant air quality impact would occur if implementation of the project would result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard.

Because the proposed project would exceed the project-level air quality significance thresholds for PM$_{10}$ emissions, the proposed project’s construction emissions would have a cumulatively considerable contribution to the region’s air quality. Therefore, there is a significant cumulative impact to which the proposed project would contribute. Implementation of Mitigation Measure AQ-1.1 would reduce fugitive PM$_{10}$ dust emissions to a less than significant level, so the project’s contribution to this cumulative impact would be less than significant.

5.3.3 **Biological Resources**

Although the proposed project is located in a rural area of unincorporated San Diego County that is not proposed for intensive development in the County’s General Plan (City of Escondido 2012a), future development that may occur in the area, such as the Butterfield Trails residential project located approximately 3.25 miles northwest of the proposed project, would result in converting existing habitat to developed uses. Additionally, the improvements to nearby El Caballo Park, as described in Table 5-1, could impact similar sensitive vegetation communities to those present at Lake Wohlford. Other cumulative development projects listed in Table 5-1 are located in the urbanized area of the City of Escondido and would not contribute in a significant way to this cumulative habitat conversion. Past projects throughout the region have combined to create a cumulative impact on biological resources due to development, and future projects are likely to continue to contribute to this trend. Pursuant to County policy, development in the area would also entail open space preservation and/or off-site mitigation to ensure preservation of natural habitat. Similarly, the proposed project’s mitigation includes habitat-based mitigation at ratios identified in the BMO, which are intended to ensure habitat is restored on-site and preserved off-site to account for the project’s temporary and permanent removal. By conforming to these habitat-based mitigation requirements, the project would reduce its contribution to this cumulative impact to a less than significant level, and no additional mitigation is warranted.

5.3.4 **Cultural Resources**

Because of the distance and topographical variation between Lake Wohlford and all other projects considered in this analysis, any cultural resources impacts would be localized and would
not be affected by other cumulative projects. Therefore, no cumulative impacts to cultural resources are anticipated. The project includes a number of project design features and mitigation measures that would minimize the effects of construction on cultural resources in the area. These features include designing roads in a way that avoids known cultural resources, as well as the presence of an archaeologist and Native American monitor during any activities that could disturb previously unknown cultural resources.

5.3.5 Geology/Soils

The mountainous terrain in the project area effectively separates the geology and soils affected by this project from those affected by any other project under consideration. Any geologic or soils-related impacts associated with implementation of the project—including lack of stability or increased risk of liquefaction—would not worsen those from another project, nor would they be worsened by any other project. The proposed project would not contribute to a significant cumulative impact to geology or soils.

5.3.6 Greenhouse Gas Emissions

Because no single project is large enough to result in a measurable increase in global concentrations of GHG emissions, climate change impacts of a project are considered on a cumulative basis. The analysis presented above in Section 3.6 of this EIR is also applicable to the cumulative analysis. As discussed in Section 3.6, the project would not generate significant GHG emissions and would be consistent with applicable GHG reduction plans. Therefore, the project would not contribute to a cumulatively considerable GHG impact.

5.3.7 Hazards and Public Safety

Public safety hazards related to construction zones are generally limited to the immediate area of activity and have minimal potential to combine with other projects in a cumulative manner. Because there are no cumulative projects in the immediate area of the Oakvale Road realignment or the dam construction area, the project would not have the potential to combine with another project resulting in increased public safety hazards due to construction operations. Thus, the project would not result in a cumulatively considerable contribution to a public safety impact.

Hazardous materials impacts are typically very limited in their geographic scope as the effect is generally contained within a specific location or site, with some exceptions such as spreading through groundwater. Most construction projects in the area would require the use of standard hazardous materials typical of construction operations such as solvents, fuels, and lubricants. Similar to the project, any projects involving hazardous materials would be required to comply
with all local, state, and federal health and safety requirements. The City would also require the
preparation and implementation of a contingency plan to prevent and contain accidental release
of hazardous products for projects with hazardous material use. With adherence to regulatory
requirements, the potential for cumulative public safety impacts due to hazardous material would
be minimized. The project would not result in a cumulatively considerable contribution.

Other cumulative projects also located in high risk areas for wildfires could be a source of
potential fire due to construction activities. Similar to requirements for the proposed project, the
City would require contractors on projects with wildlife hazards to prepare a Fire Prevention and
Response Plan, which would minimize potential for accidental wildfires due to construction
operations. With adherence to fire prevention requirements, the potential for cumulative public
safety impacts due to wildfires ignited by construction activities would be minimized. The
project would not result in a cumulatively considerable contribution.

5.3.8 Hydrology and Water Quality

The cumulative study area for assessing the potential water quality and storm water runoff
impacts of the proposed project is the Escondido Creek HA within the Carlsbad HU. Land uses
in the Escondido Creek HA include open space, vacant/undeveloped land, and rural residential
land in the east, and denser development in the City of Escondido in the west. None of the
cumulative projects are located upstream of the proposed project within the Escondido Creek
HA; several cumulative projects are located downstream of the proposed project, in the
developed part of the City. Potential future modifications to El Caballo Park, located
approximately 1.5 miles to the southwest of the proposed project area, may result in
modifications to Escondido Creek and were therefore examined for potential cumulative water
quality impacts. The Draft El Caballo Park Master Plan, dated February 11, 2014, proposes the
replacement of the existing concrete channel that lines the existing portion of the creek that
passes through the park. The Master Plan would remove the concrete sides of the channel, as
well as a portion of the channel bottom, and replace it with vegetation to improve area aesthetics
and improve stormwater drainage. Although any hydrologic or water quality impacts from this
change would affect Escondido Creek downstream from Lake Wohlford, no significant water
quality or hydrologic impacts from the project are anticipated. Therefore, no significant
cumulative impacts to hydrology or water quality are anticipated as a result of the proposed
project.

Conversion of undeveloped land to transportation, commercial/industrial, retail, and residential
uses can result in hydromodification and increased loading of pollutants into surface waters and,
indirectly, into groundwater provided soils with adequate percolation properties are present.
Urbanization can also introduce new sources of pollutants associated with the new land uses. To
counteract the impacts associated with increased development, all projects proposed in this watershed must undergo review by the applicable lead agency for compliance with NPDES permits for construction activities and project operations, as well as compliance with local urban runoff ordinances. BMPs must be employed in site designs to reduce sources of pollutants and to treat storm water runoff.

As discussed in Section 3.8, the purpose of the NPDES permit program, and, by extension, California’s TMDL program, is to restore the beneficial uses of receiving waters. NPDES permits are updated every 5 years by the RWQCB, based on local watershed conditions. Compliance with the NPDES program is considered sufficient to mitigate impacts to water quality. Because the proposed project would reduce peak flows into Escondido Creek, thereby limiting hydromodification influences, water quality impacts would be avoided and/or minimized. Further, because the proposed project would comply with standard water quality measures outlined in Section 3.8, the proposed project would be expected to improve the management of runoff in the proposed project area and, therefore, would not contribute to cumulative water quality impacts. The proposed project would be expected to have a net benefit cumulative impact on Lake Wohlford and Escondido Creek water quality.

5.3.9 Noise

The project would generate noise on a temporary basis at the construction sites and staging yard, as well as along the haul route. None of the cumulative projects are located in an area in which their construction noise would be received by the same receptors as those receiving noise at the proposed project’s staging yard and work areas. Therefore, no cumulative impacts would result from construction noise. As shown in Figure 5-1, the El Caballo Park and Westminster Seminary projects are adjacent to potential haul routes for the proposed project, and the Valley Center Road widening and Bear Valley Parkway widening overlap with these potential haul routes. The other cumulative projects located in the developed area of Escondido are not located adjacent to the potential haul routes, so construction traffic noise from the proposed project would not combine with project-related hauling noise. If the construction timeframes for the four cumulative projects listed above overlapped with the hauling phases of the proposed project, haul traffic could be received by the same receptors that would receive construction noise from the cumulative projects. However, the proposed project’s haul trips would occur on busy roads such that noise from the project-related haul trips would not be discernable from regular traffic noise. Therefore, the cumulative projects would not combine with the proposed project to create a cumulative noise impact.
Figure 5-1
Lake Wohlford Cumulative Projects

5.3.10 **Recreation**

None of the cumulative projects would have an effect on the recreational facilities at Lake Wohlford. Recreation-related impacts from project construction would be relatively self-contained due to the isolation of the site. The only facility in the 5-mile cumulative projects radius that offers similar recreational opportunities is Dixon Lake, which does not have any construction projects pending that would affect recreation. Recreationalists seeking an alternative to Lake Wohlford during project construction could partake in similar activities at Dixon Lake, approximately 2 miles to the west. The 2014 Draft Park Master Plan Report for El Caballo Park, an equestrian facility located approximately 2 miles from the project, includes a discussion of improvements to the Escondido Creek Trail. The 2012 Master Plan Report for that trail includes connection with Lake Wohlford trails as a long-term goal, but no immediate plans to do so have been implemented. Therefore, there would be no cumulative recreation impacts.

5.3.11 **Traffic/Circulation**

As shown in Figure 5-1, two cumulative projects—Valley Center Road widening and Bear Valley Parkway widening—overlap with the project’s potential haul routes. Those projects may occur concurrently with the materials hauling for Oakvale Road and the dam construction. If the proposed project’s hauling occurs concurrently with these cumulative projects, then haul traffic could encounter traffic delays due to lane closures and reduced lane widths during construction. Haul trucks could encounter equipment and construction trucks related to the widening projects, resulting in potential safety concerns. Other cumulative projects are located in the vicinity of the proposed project’s potential haul routes, and their construction trips are likely to travel on those same roads. To ensure concurrent construction traffic does not result in a significant cumulative impact, the City would ensure the contractor’s traffic control plan would specify measures to maintain traffic safety in the vicinity of the concurrent projects. Therefore, the project would not contribute to a significant cumulative impact.
This page intentionally left blank.
CHAPTER 6.0
PROJECT ALTERNATIVES

Section 15126.6 of the State CEQA Guidelines requires that an EIR “describe a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project, but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives.” This section presents a comparative analysis of the potential environmental impacts resulting from selected project alternatives. This chapter also discusses a series of other project alternatives that were considered during the project’s extensive planning phase but were not carried forward based on an extensive engineering and environmental evaluation conducted by the City.

6.1 RATIONALE FOR ALTERNATIVE SELECTION

The State CEQA Guidelines direct lead agencies that the “range of potential alternatives to the proposed project shall include those that could feasibly accomplish most of the basic objectives of the Project and could avoid or substantially lessen one or more of the significant effects” (Section 15126.6[c]). The Lake Wohlford Dam Replacement Project’s environmental impacts are analyzed in Chapter 3 of this EIR with an emphasis on identifying potentially significant impacts and recommended mitigation measures to avoid these impacts. The environmental analysis in this EIR identified significant impacts for air quality, biological resources, cultural resources, and noise. In addition, Chapter 5 identifies a significant cumulative traffic impact. Impacts to air quality, biological resources, cultural resources, and cumulative traffic can be mitigated to below a level of significance with the incorporation of the mitigation measures in Chapter 3 of this EIR. Noise impacts were identified as significant and unavoidable with project implementation. This chapter provides a comparative analysis of two alternatives to the proposed project, including the “Existing Dam Improvement Alternative” (Alternative 1) and the No-Project Alternative. Alternative 1 was selected because of its potential to avoid the significant and unavoidable noise impact identified in Section 3.9, and because of the reduction in impacts on habitat in the downstream construction area.

6.2 ALTERNATIVES CONSIDERED BUT REJECTED DURING PLANNING PHASE

In 2008, the City of Escondido contracted GEI Consultants to develop a series of engineering alternatives that could then be further analyzed during the project planning process. Using the
results of the GEI report, ICF Jones & Stokes (ICF) prepared an opinion on the potential environmental impacts of each alternative. As the City continued the planning process, they evaluated the engineering and environmental issues with these alternatives, and ultimately decided to move forward with the RCC dam downstream of the existing dam, as described in Chapter 2 and analyzed for environmental impacts in Chapter 3. This section provides a brief discussion of the alternatives that were considered but rejected during the planning phase, as based on the GEI report (GEI 2008) and ICF report (ICF 2008). The alternatives considered in these analyses can be separated into two categories: upstream solutions, which would reuse the existing dam (Alternatives 1, 2, and 3), and downstream solutions, which would construct a new dam downstream of the existing dam (Alternatives 4A/4B, 5, and 6). Each alternative is described below, with the exception of Alternative 1, which is discussed as Alternative 1 below in Section 6.3, and Alternative 6, which is the proposed RCC dam considered in Chapter 3 of this EIR.

6.2.1 Stabilizing Berm on Upstream Slope

The GEI and ICF reports considered a project involving stabilizing the berm on the upstream slope, which was Alternative 2 in those reports. This would have involved constructing a cofferdam upstream of the existing dam using borrow materials from the reservoir bottom. Lake bottom deposits and loose foundations soils located below the footprint of the proposed new berm would be excavated and processed through an on-site crushing/processing facility. The compact new rockfill and/or earthfill would be placed on the upstream side of the existing dam to create a stabilizing berm, and overlaid on the downstream side of the existing dam. A cofferdam would be constructed in the reservoir approximately 1,000 feet upstream of the existing dam, which would require additional disturbance in jurisdictional areas and a further reduction in reservoir capacity during construction. The cofferdam would encroach into an existing BLM-owned parcel, requiring approvals from that agency. Alternative 2 was rejected because it does not remedy the potential for internal erosion of hydraulic fill through the rockfill section of the existing dam (GEI 2008).

6.2.2 Shear Wall Through Upstream Slope

Constructing a shear wall through the existing dam’s upstream slope was considered as Alternative 3 in the GEI and ICF reports. This alternative proposed stabilizing the existing dam by placing a shear wall on the upstream side of the existing dam, and by placing a new rockfill overlay on the downstream side of the existing dam. To achieve this, a cofferdam would be constructed in a location similar to Alternative 2. Excavated hydraulic fill and wagon fill would be placed upstream of the existing dam. Compacted earthfill would be placed above the top of shear walls to reestablish the upstream slope of embankment, and compacted rockfill material
would be overlaid on the downstream side of the existing dam. Alternative 3 was rejected because it does not remedy the potential for internal erosion of hydraulic fill through the rockfill section of the existing dam, similar to Alternative 2 (GEI 2008).

6.2.3 New Rockfill Dam

Alternatives 4A and 4B proposed rockfill dams downstream of the existing dam, with 4A proposing a new earth-core dam and 4B proposing a concrete-faced dam. The top portion of the existing dam would be removed and the material disposed of in the reservoir. A new spillway would be cut through the north abutment of the new dam and a temporary access road was identified from Oakvale Road east to Guejito Road for use only by local residents/businesses and emergency-response vehicles. The temporary access road would have encroached onto existing BLM lands. These alternatives would have resulted in much larger downstream footprints for the replacement dam than the RCC method selected by the City. They were rejected primarily because rockfill characteristics are not fully known until full-scale blasting during construction takes place, increasing potential for differing site conditions and complications during project construction (GEI 2008).

6.2.4 New Earthfill Dam

Alternative 5 in the GEI and ICF reports was construction of a new earthfill dam downstream of the existing dam. This alternative would have required borrow of earth materials, most likely from surficial soils in Bear Valley, resulting in off-site impacts not contemplated for the RCC option in this EIR. Similar to Alternatives 4A and 4B, Alternative 5 would have resulted in a much larger footprint downstream of the existing dam, and a temporary access road would be constructed from Oakvale Road east to Guejito Road for bypass use during construction. The excavation area for the right dam abutment and spillway is much larger than for the RCC dam selected for project analysis. For these reasons, this alternative was rejected from further consideration.

6.3 ALTERNATIVES ANALYSIS

The following section compares the potential impacts of Alternative 1 and the No-Project Alternative to the project analyzed in Chapter 3 of this EIR. A discussion is also provided regarding the ability of both alternatives to meet the project objectives, which are presented in Section 2.2 of this EIR.
6.3.1 **Alternative 1: Existing Dam Improvement Alternative**

Alternative 1, as analyzed pursuant to CEQA requirements in the discussion below, is Alternative 1 from the GEI and ICF reports. This alternative proposes improvement of the existing dam, rather than constructing a new dam downstream of the existing dam. The existing hydraulic fill on the upstream side of the dam, which is the problematic feature causing the safety concern in the existing dam, would be removed and replaced with engineered rockfill, which would improve the dam’s seismic safety. The new rockfill would need to be placed on competent foundation materials, requiring excavation and removal of any loose soils below the new footprint. The seismic stability of the downstream slope would be increased by placing a rockfill overlay on the existing rockfill section. Seepage through the new rockfill would be controlled by a concrete facing placed on the upstream slope. Hydraulic fill, lake bottom deposits, and loose foundation soils located upstream of the existing rockfill section would be removed, processed in a facility on-site, and then placed on the upstream and downstream sides of the existing rockfill. A plan drawing of Alternative 1 is shown in Figure 6-1.

There are several considerable differences in impact area between Alternative 1 and the RCC method described in Chapter 2. First, in-place replacement of the dam would obviate the Oakvale Road realignment component of the proposed project, as the replacement dam would keep the same left abutment and access point to the dam crest. Second, the existing spillway would not need to be replaced, limiting the amount of excavation on the slope north of the dam. Third, the downstream construction area would be smaller because the Alternative 1 dam footprint would only be slightly larger than the dam’s existing footprint. Fourth, a temporary cofferdam would be constructed approximately 1,000 feet upstream of the dam, which was anticipated in the GEI report to be located on a parcel within the reservoir that is owned by BLM. Finally, alternative 1 also would require establishment of an off-site borrow area for excavation of rock materials in the dam improvements. This would create additional impacts at an undetermined off-site location. Analysis below assumes the primary staging yard from the proposed project would be used for staging, and that the access road would be constructed in a similar alignment to the right abutment for use during construction and in perpetuity for maintenance and inspection access.

In addition to area of impact, other key differences include construction timing and duration. Because Alternative 1 does not entail RCC construction, there would be no need for 24-hour work. However, project construction would last for a longer period of time. Most importantly, Alternative 1 would require draining Lake Wohlford prior to construction of the cofferdam. Once the cofferdam is erected, the City may be able to fill the reservoir for use during construction, although at a substantially reduced level from its existing conditions. Therefore, Alternative 1 would result in long-term restrictions on the reservoir’s functions as a water storage facility and on its usability for recreation.
Alternative 1 - Replace Hydraulic Fill with Rockfill Site Plan

Figure 6-1
This alternative would achieve all of the Project objectives, but would result in a longer construction phase, increased costs, and reduced reservoir function during construction. Consideration of Alternative 1 environmental impacts is provided below.

Aesthetics

Alternative 1’s permanent aesthetics impacts would be less than those of the proposed project, because Alternative 1 does not require realignment of Oakvale Road or excavation north of the dam. However, as described in Section 3.1, these remote areas are limited in their visibility, so this difference in environmental impacts is not significant. On a temporary basis, Alternative 1 would result in a greater amount of aesthetics impacts due to draining Lake Wohlford and the visibility of the coffer dam from public locations at the Lake Wohlford Marina.

Air Quality

The amount of air pollutant emissions under Alternative 1 would likely be similar to those under the proposed project, although they would occur in different locations. Alternative 1 would avoid emissions related to Oakvale Road realignment, but would result in other impacts at the off-site borrow location and due to construction of the temporary cofferdam in the reservoir. Construction would occur over a longer timeframe, but would be less intense due to avoidance of 24-hour work. Therefore, there is no discernable increase or reduction in pollutant emissions, and Alternative 1 is assumed to result in the same significant impact identified in Section 3.2. Mitigation measures identified in Section 3.2 would be required for Alternative 1.

Biological Resources

Alternative 1 would result in a lesser acreage of permanent impacts due to the reduced project footprint, primarily in the downstream construction area, Oakvale Road excavation, and grading north of the dam. However, Alternative 1 would also result in additional off-site impacts at the borrow area. Alternative 1 would also result in a greater acreage of temporary impacts on jurisdictional wetlands from construction of the cofferdam and long-term operation of the staging area between the cofferdam and the existing dam. Alternative 1 would not avoid any of the significant impacts identified in Section 3.3, and would require implementation of all mitigation measures identified in that section. Mitigation acreages identified in measures related to Impact BIO-3 would differ, but all habitat types would be included. Alternative 1 also has the potential to affect other habitat types and other species not identified in Section 3.3, depending on the location of the borrow area.
Cultural Resources

Alternative 1 would result in cultural resources impacts that are similar to those identified in Section 3.4, although additional cultural resources survey work would need to be performed for the borrow site location to confirm that this additional Alternative 1 feature would not impact any existing resources. All significant impacts and mitigation measures identified in Section 3.4 also apply to Alternative 1. As with the proposed project, known cultural resources in the vicinity of the Alternative 1 construction area would need to be identified as ESAs on construction drawings and flagged in the field for avoidance, and initial grading work would require the presence of cultural resources monitors.

Geology/Soils

No significant geology and soils impacts were identified for the proposed project, and Alternative 1 is not anticipated to result in any additional significant impacts. Excavation areas in the slopes north and south of the dam would be avoided under Alternative 1, so the geological footprint would be reduced. As in the proposed project, proper engineering of Alternative 1 would ensure seismic stability and prevent hazardous downstream conditions.

Hazards and Hazardous Materials

Alternative 1 has the potential to result in an impact that was not identified for the proposed project. During construction, seismic failure of the coffer dam could lead to hazardous flooding that would inundate the work area and endanger workers. To avoid this, the cofferdam would require proper geotechnical engineering.

Hydrology and Water Quality

Alternative 1 could result in additional water quality impacts during construction due to construction of the cofferdam. Alternative 1 would be subject to the same construction-period storm water control requirements identified for the proposed project.

Noise

Alternative 1 would avoid the significant and unavoidable impact of nighttime construction identified in Section 3.9 because Alternative 1 would not entail 24-hour work. Alternative 1 would also not include a batch plant at the staging yard, so construction activity would generate less noise received by nearby residences. However, the noise that would be generated during project construction would occur for a longer duration under this alternative, which could be less
favorable to the receivers. Under Alternative 1, noise from cofferdam construction and demolition would also be received by residences south of the reservoir, increasing noise impacts on these receptors. Additional noise generation would result from excavation at the off-site borrow area, which would expose additional receptors to project-related noise beyond those considered for the proposed project. Therefore, while Alternative 1 would avoid the significant and unavoidable impact identified for the proposed project, it would also result in different noise impacts that would temper its benefits.

Recreation

Alternative 1 would likely result in a significant and unavoidable recreation impact due to temporary closure of Lake Wohlford for recreational use during project construction. Erection of the cofferdam would require drawdown of the reservoir, which may persist throughout the duration of the project. If water is placed back in the reservoir during construction for municipal storage purposes, the reservoir is unlikely to reopen due to a concern for public safety with the presence of the cofferdam. Therefore, the Alternative 1 impacts with respect to recreation would be greater than those of the proposed project.

Traffic/Circulation

Because it would not entail RCC construction requiring delivery of constituent materials from off-site, Alternative 1 would generate less off-site haul traffic than the proposed project. However, additional hauling impacts would occur between the off-site borrow area, and these impacts could have a greater localized impact on roads near the project site. Alternative 1 would avoid Oakvale Road improvements, so the existing curve on this narrow road that would be straightened out by construction of the proposed project would not be accomplished under Alternative 1.

Land Use

In addition to those subjects addressed for the proposed project in Chapter 3 of this EIR, Alternative 1 would also result in a temporary land use impact not anticipated for the proposed project. Based on the preliminary location shown in the GEI report, the cofferdam is proposed to partially overlap with a parcel in the reservoir that is owned by BLM. Therefore, additional permitting would be required from that agency under Alternative 1 to obtain the right to construct on this federal land.
Rationale for Selecting the Proposed Project over Alternative 1

Alternative 1 meets all of the project objectives but would take longer to construct, would require further drawdown of the reservoir, and would result in a structure that may not last as long as the RCC option. The proposed project was selected over Alternative 1 because of the potential to keep the reservoir at current levels during downstream construction, the reduced duration of project construction, and the reliability and longevity of RCC construction. Alternative 1 reduces and avoids some impacts, but increases other impacts or extends impacts due to the longer construction duration, so there is no clear benefit from an environmental analysis perspective.

6.3.2 No-Project Alternative

The No-Project Alternative would result in the continued operation of the existing dam and would not allow for the restoration of water levels. Although short-term environmental impacts would be avoided, a long-term adverse impact to the City’s flood control and water supply system would occur. The No-Project Alternative would not achieve any of the project objectives identified in Section 2.2. The following discussion addresses the impacts of the No-Project Alternative on environmental resources.

Aesthetics

The No-Project Alternative would not alter any land, so none of the impacts discussed in Section 3.1 would occur. However, the No-Project Alternative would also not allow for an increase in reservoir water levels, which was identified as a beneficial impact in Section 3.1.

Air Quality

No construction work would occur under the No-Project Alternative; therefore, the No-Project Alternative would avoid significant impacts identified in Section 3.2.

Biological Resources

The No-Project Alternative would not entail any construction work or permanent features; therefore, the No-Project Alternative would avoid all impacts on biological resources identified in Section 3.3.
Cultural Resources

The No-Project Alternative would have no direct impact on cultural resources because no construction would occur. However, because the No-Project Alternative would not allow increase in reservoir water levels, several resources that are exposed along the fringes of the current water level would not become resubmerged and could be affected by encroachment of reservoir users. Therefore, the No-Project Alternative could result in an impact on existing cultural resources that would not occur under the proposed project.

Geology/Soils

As the No-Project alternative would not involve earth disturbance, there would be no potential for geology and soils impacts from those activities. However, the No-Project Alternative would also not correct the existing seismic conditions in the existing dam, which could result in geologic hazards upstream and downstream of the dam in the event of an earthquake. Liquefaction of the existing dam could lead to earth and riprap falling down the downstream face of the dam, and could result in earth sliding down the upstream face, displacing water in the reservoir.

Hazards and Hazardous Materials

As discussed in the Geology and Soils section above, the No-Project Alternative would not correct the existing seismic conditions in the existing dam, which could result in an impact on public safety in the event of an earthquake. The No-Project Alternative would not result in any other hazards and hazardous materials impacts because no construction would occur.

Hydrology and Water Quality

The No-Project Alternative would maintain existing hydrology/water quality conditions at Lake Wohlford. In the event of an earthquake, as discussed above under Geology and Soils, earth from the upstream face of the dam could slide into the reservoir, which would affect water quality by increasing turbidity.

Noise

Because the No-Project Alternative would not entail any construction, it would avoid all noise impacts identified for the proposed project in Section 3.9.
Recreation

The No-Project Alternative would not result in the temporary impacts on recreational uses identified in Section 3.10 for the proposed project during construction. All trails and areas of the marina would remain available for public use. Maintenance of the reservoir at the existing level would continue to limit the reservoir area available for fishing and boating, which is likely to be perceived as a recreation impact to frequent reservoir users.

Traffic/Circulation

The No-Impact Alternative would not generate construction traffic, so there would be no impact.

Rationale for Selecting the Proposed Project over the No-Project Alternative

Although it would avoid significant impacts related to construction work, including impacts on air quality, biological resources, cultural resources, and noise, the No-Project Alternative is not an option because it would perpetuate unsafe conditions at the existing dam and prevent the City from using the full water storage potential in their reservoir. The No-Project Alternative would not meet any of the project objectives, and the City has been in the planning stages for implementing this project for several years.
CHAPTER 7.0
OTHER CONSIDERATIONS REQUIRED BY CEQA

Section 15126.2 of the State CEQA Guidelines specifies requirements for consideration and discussion of significant environmental impacts. The proposed project’s significant impacts are analyzed in the various sections of Chapter 3, pursuant to Section 15126.2(a) of the State CEQA Guidelines. Other requirements of EIRs specified in the above-referenced section are addressed below.

7.1 SIGNIFICANT ENVIRONMENTAL EFFECTS THAT CANNOT BE AVOIDED IF THE PROJECT IS IMPLEMENTED

Section 15126.2(b) of the State CEQA Guidelines requires a description of a project’s significant impacts that “can be mitigated but not reduced to a level of insignificance.” The analysis conducted for this EIR identified one significant impact that cannot be avoided because the identified mitigation measure would not fully reduce the impact to a less-than-significant level. As stated in Section 3.9, the project would generate 24-hour construction noise for a period of 5 months during the RCC construction phase. This noise would be received by residential receptors and cannot be mitigated to a less-than-significant level by the mitigation measures identified for the project. Therefore, the project would result in a significant and unavoidable impact for noise. A statement of overriding considerations would be necessary pursuant to Section 15093 of the State CEQA Guidelines.

7.2 SIGNIFICANT IRREVERSIBLE ENVIRONMENTAL CHANGES

Section 15126.2(c) of the State CEQA Guidelines requires consideration of the project’s irreversible environmental changes, including commitments of nonrenewable resources. The project would entail use of nonrenewable fuels to power construction equipment and would use aggregate materials to make concrete. These uses are similar to all construction projects, and do not represent a significant impact. Beyond the project’s construction phase, there would be no long-term commitment of resources. The project would also entail permanent conversion of existing natural habitat to developed uses, as described in Section 3.3. This was identified as a significant impact and will be mitigated by preservation of off-site mitigation land.

7.3 GROWTH-INDUCING IMPACTS

A discussion of the proposed project’s growth-inducing impacts is required under CEQA Guidelines Section 15126(d). This includes ways in which a project would foster economic or
population growth, or the construction of additional housing, in the surrounding environment. A project may be growth inducing if it does any of the following:

- directly or indirectly fosters economic or population growth or the construction of additional housing,
- removes obstacles to population growth,
- taxes community service facilities to the extent that the construction of new facilities would be necessary, or
- encourages or facilitates other activities that cause significant environmental effects.

The dam replacement project is intended to return water storage capacity for the City, not increase capacity at Lake Wohlford. Therefore, the dam project would not induce population growth, remove obstacles for future growth, or generate increased demand for existing utilities and public services in the project area.

Although the Oakvale Road realignment would improve a roadway, the project-related improvement would not induce growth because the minor changes would not significantly enhance access to currently inaccessible areas. The developable area immediately surrounding the project is restricted by the area’s topography, so construction of a significant amount of additional housing would be infeasible. The improved roadway would not require a significant increase in operations and maintenance activities such as street cleaning, landscape watering, or law enforcement and emergency services.

The proposed project would temporarily require construction workers, but most would be expected to come from the local workforce and would not exert an additional burden on local housing availability. The proposed project would ultimately enhance the recreational functions offered by Lake Wohlford; however, it is not anticipated that the project would generate enough new nonlocal visitors to create a need for new tourist-related commercial uses. Therefore, neither construction nor long-term uses associated with the project would be considered growth-inducing.
CHAPTER 8.0
LIST OF PREPARERS AND CONTRIBUTORS

City of Escondido
Bill Martin, Principal Planner

AECOM
Bill Graham, Principal
Alex Hardy, Project Manager
Lyndon Quon, Senior Biologist
Kara Friedman, Environmental Planner
Liz Schneider, Environmental Planner
Garrett Avery, Visual Resources
Amy Gardner, Water Quality Specialist
Jason Paukovits, Air Quality Specialist
Hallie Fitzpatrick, Environmental Planner
Nathan Counts, Environmental Planner
Therese Tempereau, Technical Editor
Robin Rice, Word Processor
Peter Augello, GIS Specialist
Delbbie Dela Paz, Graphics

Black & Veatch
John Bekmanis
Crystal Dirks

Affinis
Mary Robbins-Wade

Linsecott, Law & Greenspan
John Boarman
This page intentionally left blank.
CHAPTER 9.0
REFERENCES

Affinis. 2013. Cultural Resources Inventory for the Lake Wohlford Dam Replacement Project.
Black and Veatch (B&V). 2014b. Oakvale Road Realignment 30% Design Memorandum

California Department of Conservation, Division of Mines and Geology. 1995a. Landslide Hazards in the Northern Part of the San Diego Metropolitan Area, Valley Center Quadrangle (Plate C).
California Department of Conservation, Division of Mines and Geology. 1995b. Landslide Hazards in the Northern Part of the San Diego Metropolitan Area, DMG Open File Report 95-04, Landslide Hazard Identification Map No. 35.

California Department of Fish and Wildlife. 2013. Species of Special Concern or Watch List.

City of Escondido. 2015b. Oakvale Road Realignment and Improvement Project Initial Study and Mitigated Negative Declaration.

City of Escondido. 2015e. Unpublished reservoir elevation data, provided by Lori Rountree. July.

County of San Diego. 2008. San Diego County Code of Regulatory Ordinances, Title 3, Division 6, Chapter 4: Noise Abatement and Control. December.

County of San Diego. 2011a. County of San Diego General Plan, Conservation and Open Space Element. August.

Kleinfelder. 2014b. Draft Geotechnical Data Report Amendment No. 2

University of San Diego. 2014. GHG Emissions Inventory for the San Diego Region. Energy Policy Initiatives Center at University of San Diego. 2014.

