Appendix A

Greenhouse Gas Emissions Inventory and Projections
City of Escondido Greenhouse Gas Emissions Inventory and Projections

Draft
July 2018

Prepared for the City of Escondido

Prepared by the Energy Policy Initiatives Center
About EPIC

The Energy Policy Initiatives Center (EPIC) is a non-profit research center of the USD School of Law that studies energy policy issues affecting California and the San Diego region. EPIC’s mission is to increase awareness and understanding of energy- and climate-related policy issues by conducting research and analysis to inform decision makers and educate law students.

For more information, please visit the EPIC website at www.sandiego.edu/epic.
Prepared in partnership with the San Diego Association of Governments (SANDAG) and the Roadmap Program. This Program is partially funded by California utility customers and administered by San Diego Gas & Electric Company under the auspices of the California Public Utilities Commission.
Table of Contents

1 Overview ... 1

2 Background ... 1
 2.1 Greenhouse Gases ... 1
 2.2 Categories of Emissions .. 1
 2.3 Demographics ... 2
 2.4 Rounding of Values in Tables and Figures .. 2

3 Summary of GHG Emissions Inventory ... 2

4 Methods to Calculate Emissions Inventory .. 4
 4.1 On-Road Transportation ... 4
 4.2 Electricity ... 7
 4.3 Natural Gas .. 10
 4.4 Off-Road Transportation ... 11
 4.5 Solid Waste .. 13
 4.6 Water .. 14
 4.7 Wastewater .. 14

5 Business-As-Usual GHG Emissions Projections .. 18
 5.1 Emissions Projections for 2020, 2030, 2035, and 2050 ... 19
 5.2 Methods to Project GHG Emissions ... 21

Appendix A. Escondido VMT by Trip Type .. A-1

Appendix B. Source Data For the Solid Waste Emission Factor ... B-1
1 OVERVIEW

This document presents a summary of the greenhouse gas (GHG) emissions for the City of Escondido (referred to as Escondido or the City) from 2012 to 2014, and the business-as-usual (BAU) emissions projections for 2020, 2030, 2035, and 2050. This BAU projection demonstrates emissions growth in the absence of any new policies and programs and does not consider future impacts of adopted Federal and State policies. GHG reductions from these policies, are considered later in the climate action planning process and are referred to as the “legislatively-adjusted BAU”.

Section 2 describes the background sources and common assumptions used for the inventory and projections. Section 3 provides the results of the GHG emissions inventory for 2012 to 2014. The methods used to prepare each category of the inventory are provided in Section 4. Section 5 provides a summary of the emissions projections for 2020, 2030, 2035, and 2050, and the methods used to prepare each category of projections.

2 BACKGROUND

2.1 Greenhouse Gases

The primary GHGs included in the emissions estimates presented here are carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). Each GHG has a different capacity to trap heat in the atmosphere, known as its global warming potential (GWP), which is normalized relative to CO₂ and expressed in carbon dioxide equivalents (CO₂e). In general, the 100-year GWPs reported by the Intergovernmental Panel on Climate Change (IPCC) are used to estimate GHG emissions. The GWPs used in this inventory are from the IPCC Fourth Assessment Report (AR4),¹ provided in Table 1.

<table>
<thead>
<tr>
<th>Greenhouse Gas</th>
<th>Global Warming Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>1</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>25</td>
</tr>
<tr>
<td>Nitrous oxide (N₂O)</td>
<td>298</td>
</tr>
</tbody>
</table>

2.2 Categories of Emissions

The U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions (U.S. Community Protocol)² requires a minimum of five basic emissions-generating activities to be included in a Protocol-compliant community-scale GHG inventory. These categories are: electricity, natural gas, on-road transportation, water and wastewater, and solid waste. GHG emissions are calculated by multiplying activity data (e.g., kilowatt-hours of electricity, tons of solid waste) by an emission factor (e.g., pounds of CO₂e per unit of electricity). For these five categories, methods used in this inventory were based on the U.S. Community Protocol standard methods and modified with regional- or City-specific data when available.

Additionally, GHG emissions from off-road transportation were included in the inventory and projections, based on the methods and models used by California Air Resources Board (CARB) in the statewide GHG emission inventory. ³

All activity data and GHG emissions reported in this document are annual values, and all emission factors reported in this document are annual average values, unless stated otherwise.

2.3 Demographics

The San Diego Association of Governments (SANDAG) estimates and forecasts population and employment for all jurisdictions in the San Diego region. The population and jobs estimate from 2012 to 2014 for Escondido are provided in Table 2.⁴

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>146,781</td>
<td>48,874</td>
</tr>
<tr>
<td>2013</td>
<td>148,522</td>
<td>49,456</td>
</tr>
<tr>
<td>2014</td>
<td>149,362</td>
<td>50,038</td>
</tr>
</tbody>
</table>

2.4 Rounding of Values in Tables and Figures

Rounding is used only for the final GHG value within the tables and figures throughout the document. Values are rounded to the nearest integer of a higher order of magnitude. Values are not rounded in the intermediary steps in the actual calculation. Because of rounding, some totals may not equal the exact values summed in any table or figure.

3 SUMMARY OF GHG EMISSIONS INVENTORY

The total GHG emissions from Escondido in 2012 were estimated at 943,000 metric tons CO₂e (MT CO₂e), distributed into categories as shown in Figure 1.

⁴ 2012–2014 Population are from SANDAG’s Demographic & Socio-Economic Estimates (March 9, 2017 Version). Jobs in 2012 are from SANDAG’s Series 13 Regional Growth Forecast (October 2013). Jobs in 2013 and 2014 are interpolated linearly based on 2012 and 2020 jobs estimates. The number of jobs is for civilian jobs only and does not include military jobs, SANDAG Data Surfer, accessed on November 15, 2017.
The total GHG emissions in each year 2012, 2013, and 2014 are provided in Table 3. The 2013 estimate was 927,000 MT CO$_2$e and the total GHG emissions in 2014 were estimated at 874,000 MT CO$_2$e, 7% lower than the total emissions in 2012. Both the 2013 and 2014 GHG emissions have similar distributions among the emissions categories as the 2012 GHG emissions. The on-road transportation category contributed the most (53%) to the overall GHG emissions in 2012, while the wastewater category contributed the least (<1%). The totals and breakdown of emissions by category are presented in Table 3.
Table 3 Total and Breakdown of Estimated GHG Emissions in Escondido (2012–2014)

<table>
<thead>
<tr>
<th>Emissions Category</th>
<th>2012 GHG Emissions (MT CO₂e)</th>
<th>2013 GHG Emissions (MT CO₂e)</th>
<th>2014 GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Road Transportation*</td>
<td>498,000</td>
<td>490,000</td>
<td>479,000</td>
</tr>
<tr>
<td>Electricity</td>
<td>256,000</td>
<td>245,000</td>
<td>215,000</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>118,000</td>
<td>121,000</td>
<td>108,000</td>
</tr>
<tr>
<td>Off-Road Transportation</td>
<td>30,000</td>
<td>29,000</td>
<td>29,000</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>24,000</td>
<td>25,000</td>
<td>25,000</td>
</tr>
<tr>
<td>Water</td>
<td>11,000</td>
<td>12,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Wastewater</td>
<td>6,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Total</td>
<td>943,000</td>
<td>927,000</td>
<td>874,000</td>
</tr>
</tbody>
</table>

Sum may not add up to totals due to rounding. GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

*Based on SANDAG Series 13 vehicle miles traveled (VMT) estimates. 2012 is the Base Year.

4 METHODS TO CALCULATE EMISSIONS INVENTORY

4.1 On-Road Transportation

The emissions associated with on-road transportation in Escondido are calculated by multiplying the estimated vehicle miles traveled (VMT) and the average vehicle emission rate in the San Diego region in a given year. Average weekday VMT data were provided by SANDAG based on its activity-based model and the Origin-Destination (O-D) method. The O-D VMT method is the preferred method proposed by the U.S Community Protocol in ‘TR.1 Emissions from Passenger Vehicles’ and ‘TR.2 Emissions from Freight and Service Trucks’ that estimates miles traveled based on where a trip originates and where it ends to better attribute on-road emissions to cities and regions of miles traveled (Figure 2).

Figure 2 Components of O-D Method for VMT Calculation

O-D VMT data include all the miles traveled for trips that originate and end within a boundary (in this case, within Escondido city limits, referred to as Internal-Internal), and half of the miles traveled of the trips that either begin within the boundary and end outside the boundary (referred to as Internal-External), or vice versa (referred to as External-Internal). In accordance with the methodology, VMT from trips that begin and end outside the boundary that only pass through Escondido (referred to as External-External) are not included in the total City VMT.

The average weekday O-D VMT data for each trip type in 2012 and 2014 were provided by SANDAG, and 2013 VMT were interpolated linearly using 2012 and 2014 values (Table 4).

Table 4 O-D VMT and Trip Types (Escondido, 2012-2014)

<table>
<thead>
<tr>
<th>Year</th>
<th>Internal-Internal Trips (Miles/Weekday)</th>
<th>External-Internal/Internal-External Trips (Miles/Weekday)</th>
<th>External-External Trips* (Miles/Weekday) (Information only, excluded from City VMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>588,461</td>
<td>4,763,045</td>
<td>1,085,989</td>
</tr>
<tr>
<td>2013</td>
<td>582,385</td>
<td>4,761,943</td>
<td>1,156,606</td>
</tr>
<tr>
<td>2014</td>
<td>576,309</td>
<td>4,760,840</td>
<td>1,227,223</td>
</tr>
</tbody>
</table>

*Miles from External-External trips (pass-through trips) are the portion within the City boundary, not the entire trip.
Based on SANDAG Series 13 VMT estimates. 2012 is the Base Year. 2013 is linearly interpolated between 2012 and 2014.
SANDAG, 2018; Energy Policy Initiatives Center, 2018.

7 Series 13 2012 (Base Year) and 2014 average weekday VMT estimates were provided by SANDAG (March 28, 2017 and November 07, 2017), 2013 VMT were interpolated linearly between 2012 and 2014 VMT. Original data tables provided by SANDAG are in Appendix A.
In accordance with the methodology, estimated and projected Internal-External and External-Internal miles associated with Escondido are divided in half to allocate the miles between Escondido and all other outside jurisdictions (see Appendix A for source data). The total average weekday VMT is multiplied by 347 to adjust from average weekday VMT to average annual VMT, which includes weekends.8

The average annual vehicle emission rate expressed in grams of CO₂e per mile driven (g CO₂e/mile) were derived from the statewide mobile source emissions model EMFAC2014, developed by the California Air Resources Board (CARB).9 EMFAC2014 was used to generate average emission rates for the San Diego region for all vehicle classes, model years, speeds, and fuel types.10 The average emission rates (g CO₂e/mile) were calculated based on the VMT distribution of each vehicle class and its emission rate. The average vehicle emission rate was adjusted from g CO₂/mile to g CO₂e/mile, to account for total GHG emissions, including CO₂, CH₄, and N₂O.11 This report assumes Escondido has the same distribution of vehicle types as the region.

The total VMT, average vehicle emission rates, and corresponding GHG emissions from the on-road transportation category from 2012 to 2014 are given in Table 5.

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Vehicle Emission Rate (g CO₂e/mile)</th>
<th>Total VMT</th>
<th>GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Weekday Miles*</td>
<td>Average Annual Miles</td>
</tr>
<tr>
<td>2012</td>
<td>483</td>
<td>2,969,984</td>
<td>1,030,584,328</td>
</tr>
<tr>
<td>2013</td>
<td>476</td>
<td>2,963,356</td>
<td>1,028,284,646</td>
</tr>
<tr>
<td>2014</td>
<td>467</td>
<td>2,956,729</td>
<td>1,025,984,963</td>
</tr>
</tbody>
</table>

*Consistent with the methodology, this is the sum of internal-internal and half of both external-internal and internal-external VMT from Table 4. Weekday miles are converted to annual average before converting to GHG emissions. Based on SANDAG Series 13 VMT estimates. 2012 is the Base Year. 2013 is linearly interpolated between 2012 and 2014. GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation. CARB, 2015; SANDAG, 2018; Energy Policy Initiatives Center, 2018.

The decrease in the emission rate is likely due to the vehicle turnover rate in the San Diego region and improved vehicle emission standards of new vehicles.

Figure 3 gives the breakdown of emissions by vehicle class in 2012, based on the EMFAC vehicle class distribution in the San Diego region. This report assumes Escondido has the same distribution of vehicle types as the region.

10 EMFAC2014 Web Database: Emission Rates for SANDAG. Download date: January 22, 2016. The vehicle classes in EMFAC2014 are the same as the vehicle classes in the previous model EMFAC2011.
11 The conversion factor, 1.01, was calculated based on the ratio of CO₂ emissions to total GHG emissions (CO₂, CH₄, and N₂O expressed as CO₂e) using methods from EPA GHG Equivalencies Calculations and References. Emissions were from mobile fossil fuel combustion in the transportation end-use category in 2013 (the latest available data year), on-road emissions. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. (2015), Table 3-12 to 3-14.
types as the region. Passenger cars and light duty trucks contribute the most to the City’s on-road transportation emissions (63%), while motorcycles contribute the least with smaller than 1%.12

\textbf{Figure 3 On-Road Transportation Emissions by Vehicle Class in the San Diego Region}

\section*{4.2 Electricity}

Emissions from electricity use in Escondido were estimated using the Built Environment (BE.2) method from the U.S Community Protocol.13 Annual metered electricity sales by the local utility, San Diego Gas & Electric (SDG&E) to Escondido customers14 were adjusted by 1) a loss factor15 of 1.0716 to account for transmission and distribution losses; and 2) subtracting electricity use associated with water distribution, which is allocated to the water category emissions.

\begin{itemize}
 \item \textbf{EMFAC2014.} Energy Policy Initiatives Center, 2017
 \item Percentages may not add to totals due to rounding.
 \item *EMFAC vehicle categorization is different from Environmental Protection Agency (EPA) Emission Standards categorization.
\end{itemize}

12 In California’s EMFAC2014, passenger cars are all cars and fuel types designated as Light Duty Automobiles (LDAs). Light Duty Trucks (LDTs) are divided into LDT1 and LDT2, where LDT1 includes gas, diesel, and electric fuel vehicles, while LDT2 does not include electric vehicles. Medium-duty trucks included medium duty vehicles (MDV with Gross Vehicle Weight Rating (GVWR) 5751-8,500 lbs), and heavy-duty trucks (HDTs), with GVWR larger than 8,500 lbs. Under the EPA Emission Standard category vehicles with GVWR under 8,500 lbs are considered light-duty trucks/vehicles.
13 ICLEI – Local Governments for Sustainability USA: U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions, Version 1.0 (2012), Appendix C: Built Environment Emission Activities and Sources.
14 2012–2016 metered electricity sales were provided by SDG&E to EPIC (December 16, 2017).
15 The transmission and distribution loss factor is used to scale end-use demand or retail sales to produce net energy for load. L. Wong. A Review Of Transmission Losses In Planning Studies, CEC Staff Paper (2011)
16 California Energy Commission (CEC): California Energy Demand 2016–2026 Final Forecast Mid-Case Final Baseline Demand Forecast Forms, SDG&E Mid. The transmission and distribution loss factor is calculated based on the ratio of net energy for load (total sales + net losses) and total sales from SDG&E Mid.
Emissions are calculated by multiplying the adjusted net energy for load (electricity sales + losses) by the corresponding City-specific electricity emission factor, given in Table 6, expressed in pounds of CO$_2$e per megawatt-hour (lbs CO$_2$e/MWh). For a given year, the City-specific electricity emission factor is estimated based on the specific power mix of bundled power and Direct Access (DA) power, and their respective emission factors. The SDG&E bundled emission factors are calculated using Federal Energy Regulatory Commission (FERC) Form 1 data, the California Energy Commission (CEC) Power Source Disclosure Program, data on SDG&E-owned and purchased power, and U.S. EPA Emissions and Generating Resource Integrated Database (eGRID) on specific power plant emissions. The DA emission factor is taken from the California Public Utilities Commission (CPUC) Decision D.14-12-037.

The differences in the electricity emission factors from 2012 to 2014 reflect in part the change in the electricity power mix in the City and in SDG&E’s service territory. The emission factor increased in 2012 due to the shutdown of the zero-emissions electricity supply from the San Onofre Nuclear Generation Station (SONGS) and replacement by other natural gas-fired power plant sources. In the later years, more renewable resources were included in the power mix that resulted in a lower electricity emission factor. SDG&E had 32% renewable sources in the electricity supplied to its bundled customers in 2014, an increase from 19% in 2012.

The net energy for Escondido’s load (electricity sales + losses), electricity emission factors, and corresponding GHG emissions from the electricity category for the years 2012–2014 are given in Table 6.

<table>
<thead>
<tr>
<th>Year</th>
<th>Net Energy for Load (electricity sales + losses) (MWh)</th>
<th>Emission Factor (lbs CO$_2$e/MWh)</th>
<th>GHG Emissions (MT CO$_2$e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>742,143</td>
<td>760</td>
<td>256,000</td>
</tr>
<tr>
<td>2013</td>
<td>729,519</td>
<td>741</td>
<td>245,000</td>
</tr>
<tr>
<td>2014</td>
<td>735,224</td>
<td>646</td>
<td>215,000</td>
</tr>
</tbody>
</table>

GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation. SDG&E, 2018; Energy Policy Initiatives Center, 2018.

Electricity use fluctuated between 2012 and 2014, but GHG emissions from the electricity category decreased 16% from 2012 to 2014. This may be partly attributed to the increase of renewable content in the electricity supply, as reflected in the decrease in the electricity emission factor.

17 SDG&E bundled power includes the electricity from SDG&E-owned power plants and the electricity from its net procurements.
18 The SDG&E Direct Access Program includes electricity that customers purchased from non-SDG&E electric service providers (ESPs), but SDG&E still provides transmission and distribution services.
20 California Energy Commission (CEC) Power Source Disclosure Program under Senate Bill 1305. SDG&E annual power source disclosure report (2012-2014) were provided by CEC staff to EPIC.
22 Decision 14-12-037, December 18, 2014 in Rulemaking 11-03-012 (Filed March 24, 2011). The recommended emission factor is 0.379 MT CO$_2$e/MWh (836 lbs CO$_2$e/MWh).
23 SONGS is partially owned by SDG&E and historically accounted for approximately 15–20% of SDG&E power generation. SONGS was permanently closed in 2013 and the energy generation was replaced by other sources, including non-renewable sources, which increased the emission factor of SDG&E-generated electricity.
The net energy for load does not include self-serve renewable supply, such as customer-owned behind-the-meter photovoltaic (PV) systems, or self-serve non-renewable supply. The estimated cumulative PV capacity in Escondido at the end of 2014 was 7.7 MW, more than double the cumulative PV capacity at the end of 2012 (3 MW), corresponding to an estimated total of 37,843 MWh of behind-the-meter solar generation. The number of newly added PV systems in each year from 2012 to 2014 is also shown in Table 7. Electricity generation from PV systems is assumed to have no associated GHG emissions.

<table>
<thead>
<tr>
<th>Year</th>
<th>New PV Systems</th>
<th>Cumulative PV Systems since 2000</th>
<th>Estimated Behind-the-meter Solar Generation (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Systems</td>
<td>Capacity (MW<sub>dc</sub>)</td>
<td>Number of Systems</td>
</tr>
<tr>
<td>2012</td>
<td>320</td>
<td>3.0</td>
<td>1,107</td>
</tr>
<tr>
<td>2013</td>
<td>655</td>
<td>4.7</td>
<td>1,762</td>
</tr>
<tr>
<td>2014</td>
<td>1,040</td>
<td>7.7</td>
<td>2,802</td>
</tr>
</tbody>
</table>

The emissions from the electricity category can be broken down further into residential, commercial and industrial customer classes. In 2012, 47% of emissions were attributed to commercial electricity use, 43% were attributed to residential electricity use, and 10% from industrial use, as shown in Figure 4.

NEM Interconnection Data Set (current as of May 31, 2017), download date: September 12, 2017. Based on date of NEM interconnection applications approved. Solar capacities are reported as direct current (DC). Electricity generation is converted from capacity (power) to energy using an average solar PV system capacity factor of 20% and an annual system degradation rate of 1%.
4.3 Natural Gas

Emissions from natural gas end-use in Escondido were estimated using method Built Environment (BE.1) from the U.S Community Protocol. Annual metered natural gas sales were provided by SDG&E. Natural gas end-use does not include the natural gas used for utility-level electric generation (UEG) because those emissions are included in the electricity category.

To estimate emissions from the combustion of natural gas, fuel use was multiplied by an emission factor for natural gas based on data from the CARB. The total natural gas use and corresponding GHG emissions from the natural gas category for the years 2012-2014 are given in Table 8.

Table 8 Natural Gas Use and GHG Emissions from Natural Gas Category (Escondido, 2012–2014)

<table>
<thead>
<tr>
<th>Year</th>
<th>Natural Gas Use (Million Therms)</th>
<th>GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>21.6</td>
<td>118,000</td>
</tr>
<tr>
<td>2013</td>
<td>22.1</td>
<td>121,000</td>
</tr>
<tr>
<td>2014</td>
<td>19.7</td>
<td>108,000</td>
</tr>
</tbody>
</table>

GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

SDG&E, 2018; Energy Policy Initiatives Center, 2018.

27 2012–2016 metered natural gas sales were provided to EPIC by SDG&E (December 16, 2017 and March 13, 2018). The natural gas used for utility-level electric generation (UEG) was excluded from the data by SDG&E (March 2018). However, for the UEG facilities in Escondido, the natural gas NOT associated with electricity generation is still included in the natural gas data.

28 Emission factor for natural gas: 0.0554 million metric tons CO₂e/Million therms. CARB: Documentation of California’s GHG Inventory – Index.
Emissions from the natural gas category can be broken down further into residential, commercial, and industrial customer classes. In 2012, 64% of emissions resulted from residential natural gas use, and the remaining 30% and 6% were from commercial and industrial natural gas use respectively, as shown in Figure 5.

Figure 5 Natural Gas Emissions by Customer Class (Escondido, 2012)

4.4 Off-Road Transportation

The emissions from off-road transportation in Escondido, such as gasoline and diesel fuel use for off-road vehicles and equipment, were estimated based on CARB off-road models. OFFROAD2007 is the main model for estimating off-road transportation emissions. After the release of OFFROAD2007, CARB has been developing inventories and models for each sub-category based on specific regulatory requirements. For example, the recreational equipment category in OFFROAD2007 was replaced by RV2013. In this section, new inventories and models were used if available; otherwise, OFFROAD2007 was used.

Due to the lack of jurisdiction-specific data from CARB models, the emissions or fuel consumption from the CARB model outputs for the San Diego region were scaled to the City based on sub-category-specific scaling factors. The off-road activity sub-categories that are relevant to Escondido and the scaling factors are given in Table 9.

29 CARB: Off-Road Motor Vehicles, *OFFROAD 2007*.
30 CARB: *Mobile Source Emissions inventory – Off-Road Diesel Vehicles*.
31 CARB: Off-Road Gasoline-Fueled Equipment. Recreational Vehicles, *RV2013 (Inventory Model Database)*.
32 The sub-categories listed in this table are not the comprehensive *off-road mobile sources* listed in CARB, as some of the sub-categories are not relevant to Escondido, such as airport ground support, pleasure craft, commercial marine vessels, etc.
Table 9 Sub-Categories Included in the Off-Road Transportation Categories

<table>
<thead>
<tr>
<th>Sub-Category</th>
<th>Model Source</th>
<th>Common Equipment Type</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreational Vehicles</td>
<td>CARB RV2013</td>
<td>Terrain vehicles, golf carts, minibikes, off-road motorcycles</td>
<td>Population</td>
</tr>
<tr>
<td>Lawn and Garden Equipment</td>
<td>CARB OFFROAD2007</td>
<td>Lawn mowers, trimmers, brush cutters, chainsaws, leaf blowers/vacuums</td>
<td>Population</td>
</tr>
<tr>
<td>Light Commercial Equipment</td>
<td>CARB OFFROAD2007</td>
<td>Generator set, pumps, welders</td>
<td>Commercial Jobs</td>
</tr>
<tr>
<td>Construction and Mining</td>
<td>CARB In-Use Off-Road Equipment 2011 Inventory</td>
<td>Excavators, off-highway tractors, loaders, paving equipment</td>
<td>Construction Jobs</td>
</tr>
<tr>
<td>Industrial</td>
<td>CARB In-Use Off-Road Equipment 2011 Inventory</td>
<td>Aerial lifts, forklifts, sweepers/scrubbers</td>
<td>Industrial Jobs</td>
</tr>
<tr>
<td>Diesel-Fueled Portable Equipment</td>
<td>CARB Portable Equipment 2017</td>
<td>Compressors, generators, pumps</td>
<td>Jobs</td>
</tr>
</tbody>
</table>

In the RV2013 model, the GHG emissions from recreational vehicles in the San Diego region were reported in tons per day and converted to annual emissions. In the Portable Equipment 2017 model and In-Use Off-Road Equipment 2011 Inventory, the fuel consumptions for the equipment in the San Diego region were reported in gallons per year and converted to annual GHG emissions. For other sub-categories, the OFFROAD2007 model outputs are annual emissions for the San Diego region. The scaling factors and the corresponding GHG emissions from the off-road transportation category in 2012 to 2014 are given in Table 10.33

33 The population scaling factors were calculated based on Escondido 2012–2014 populations compared to the regional population. The regional population is from the SANDAG Demographic & Socio Economic Estimates (Updated in September 2015), download date: October 29, 2015. Regional commercial jobs in 2012 is from the SANDAG Series 13 Regional Growth Forecast (Updated in October 2013), download date: March 29, 2017, SANDAG Data Surfer. Commercial jobs include all employment types other than agriculture and mining, construction and manufacturing. The jobs estimate in 2013 is interpolated linearly based on the 2012 and 2020 jobs estimates.
Table 10 GHG Emissions from Off-Road Transportation Category (Escondido, 2012–2014)

<table>
<thead>
<tr>
<th>Sub-Category</th>
<th>Scaling Factor</th>
<th>San Diego Region (M MT CO$_2$e)</th>
<th>Escondido (MT CO$_2$e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>Recreational Vehicles</td>
<td>5%</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Lawn and Garden Equipment</td>
<td>5%</td>
<td>0.095</td>
<td>0.094</td>
</tr>
<tr>
<td>Light Commercial Equipment</td>
<td>3%</td>
<td>0.103</td>
<td>0.102</td>
</tr>
<tr>
<td>Construction and Mining</td>
<td>10%</td>
<td>0.184</td>
<td>0.185</td>
</tr>
<tr>
<td>Industrial</td>
<td>6%</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Diesel-Fueled Portable Equipment</td>
<td>4%</td>
<td>0.070</td>
<td>0.064</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30,000</td>
<td>29,000</td>
</tr>
</tbody>
</table>

Only total GHG emissions are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation. CARB, 2007, 2011, 2013 and 2017; Energy Policy Initiatives Center, 2018.

4.5 Solid Waste

Emissions from solid waste disposed by Escondido were estimated using method Solid Waste (SW.4) from the U.S. Community Protocol.\(^{34}\) To estimate emissions, the amount of waste disposed by a city in a given year is multiplied by an emission factor for mixed solid waste. Solid waste disposal data were retrieved from the California Department of Resources Recycling and Recovery (CalRecycle) Disposal Reporting System (DRS).\(^{35}\)

The emission factor of mixed solid waste depends on the percentage of each waste type within the waste stream disposed in a landfill. The City of San Diego’s 2012–2013 Waste Characterization Study was used as a reasonable proxy for Escondido’s waste composition to determine the percentage of each waste type within the mixed solid waste and applied to 2012–2014 waste disposal for the emission calculation.\(^{36}\) Only the CH$_4$ emissions from waste degradation are considered non-biogenic and included in this category in accordance with the methodology. The CO$_2$ emissions from waste degradation are considered biogenic and not included in this category.

The default capture rate of CH$_4$ emissions from landfills is 75% based on the U.S. Community Protocol; any CH$_4$ emissions above this are accounted for as emissions from the solid waste category. The total and per-capita solid waste disposal and the corresponding GHG emissions from the years 2012–2014 are given in Table 11.

4.6 Water

The City of Escondido provides both potable and recycled water service within the City, however the water service area does not align exactly with the City’s boundaries. The City is a member agency of the San Diego County Water Authority (SDCWA).\(^{37}\) The City has an emergency-only treated water connection with neighbor agency Rincon Del Diablo Municipal Water District (Rincon MWD) which has not been used in the past five years.\(^{38}\)

The potable water supply for Escondido comes from two sources: 1) imported untreated water from SDCWA; and 2) local surface water from the San Luis Rey River watershed. It is assumed that the percentage of water from each source supplied within the City’s boundaries is the same as that of the water service area. The potable water supplied in Escondido and the percentage of water from each source are given in Table 12.\(^{39}\)

<table>
<thead>
<tr>
<th>Year</th>
<th>% of Potable Water from each Water Supply</th>
<th>Potable Water Supplied (Acre-Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SDCWA Untreated Water</td>
<td>Local Surface Water</td>
</tr>
<tr>
<td>2012</td>
<td>85%</td>
<td>15%</td>
</tr>
<tr>
<td>2013</td>
<td>92%</td>
<td>8%</td>
</tr>
<tr>
<td>2014</td>
<td>98%</td>
<td>2%</td>
</tr>
</tbody>
</table>

The energy used to produce and provide potable water from each supply of water is different due to the different source type and its location. Emissions from water use in Escondido were estimated using method Wastewater and Water (WW.14) from the U.S. Community Protocol.\(^{40}\) The method considers each segment of the water system (upstream supply and conveyance, water treatment, and local water distribution) individually, as described below.

38 Personal Communication between EPIC and City of Escondido Staff (March 02, 2017). The past five years cover all inventory years 2012–2014.
39 Potable water supplied within the City of Escondido (2010–2015) only and the water production sources for the entire water service area (2010–2015) were provided by City staff on March 02, 2017 and March 23, 2017.
Upstream Supply and Conveyance — This is defined as supply and conveyance of water from the raw sources to the local service area. The upstream supply and conveyance energy use for SDCWA untreated water consists of conveyance of water from the State Water Project and the Colorado River through Metropolitan Water District’s service area up to SDCWA’s service area and onto the member agency take-over point.

Local Water Treatment — This is the energy used for water treatment plant operations. Escondido and Vista Irrigation District (VID) jointly own the Escondido-Vista Water Treatment Plant (EVWTP), and the City of Escondido operates the plant. EVWTP treats both SDCWA untreated water and local surface water to potable water standards.

Local Water Distribution — This is defined as the energy required to move treated water from water treatment plants to end-use customers. Distribution energy use includes energy use for water pump stations and/or pressure reduction stations, water tanks, etc. The City maintains five main pump stations within the boundaries.

The energy intensity per unit of water for each segment of the water-use cycle is given in Table 13.

<table>
<thead>
<tr>
<th>Year</th>
<th>Upstream Supply and Conveyance - SDCWA untreated water (kWh/Acre-Foot) 41</th>
<th>Local Water Treatment Energy Intensity (kWh/Acre-Foot) 42</th>
<th>Local Distribution Energy Intensity (kWh/Acre-Foot) 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>1,755</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For upstream supply and conveyance emissions, the amount of water from SDCWA was multiplied by the upstream energy intensity to get the total electricity use from upstream supply. The electricity use was multiplied by the average California electricity emission factor to calculate the GHG emissions. 44 Because the electricity use and GHG emissions associated with upstream supply and conveyance are outside the City boundary and would not be included in the electricity category, they are accounted for in this water category.

41 Upstream supply and conveyance energy intensity for SDCWA untreated water includes conveyance from the State Water Project and Colorado River water to MWD’s distribution system, distribution from MWD to MWD’s member agencies, and SDCWA’s conveyance of raw water supplies to SDCWA’s member agencies.

42 The energy intensity at the Escondido-Vista Water Treatment Plant in 2015 was used as a proxy for 2012–2014. The entire plant’s operational electricity use (SDCWA untreated and local surface water) for treatment in 2015 was provided by the City staff in March 2017. The amount of water (SDCWA untreated and local surface water) treated at the EVWTP in 2015 was provided by the City of Escondido and VID (through the City of Vista). The energy intensity at the plant in 2015 was calculated by dividing electricity use (1,940,751 kWh) by volume of water treated (34,591 acre-foot).

43 The distribution energy intensity in 2015 was used as a proxy for 2012–2014. The distribution energy intensity was calculated by dividing the electricity use at five pump stations within the City boundary (590,683 kWh) by volume of water delivered within the City (17,766 acre-foot). Both electricity use and water delivered were provided by City staff in March 2017.

44 The Western Electricity Coordinating Council (WECC) CAMX (eGRID Subregion) emission rate from eGRID was used as a proxy for the average California electricity emission rate for upstream electricity. U.S. EPA eGRID 2012 (2015) and eGRID 2014 v2 (2017).
For water treatment emissions, the water used by Escondido was multiplied by the water treatment energy intensity and SDG&E’s electricity emission factor to obtain GHG emissions associated with water treatment. Because the EVWTP is located in the City, the electricity use associated with its water treatment is included in the electricity use for Escondido. The electricity and GHG emissions have been subtracted from the electricity category, as they are accounted for in this water category.

For water distribution emissions, potable water used by Escondido was multiplied by the energy intensity for local water distribution and the SDG&E electricity emission factor. The electricity and GHG emissions associated with water distribution occur within the City boundary and have been subtracted from the electricity category, as they are accounted for in this water category.

In addition to providing potable water, the City also produces and delivers recycled water. The recycled water is treated at the City’s Hale Avenue Resource Recovery Facility (HARRF). In addition to customers within Escondido, the City also provides recycled water to Rincon MWD customers and the Palomar Energy Center. The recycled water energy intensity of 588 kWh/acre-foot based on a regional analysis for the North San Diego Water Reuse Coalition (NSDWRC) is used as proxy for the City. Because the HARRF is in the City, the electricity use associated with recycled water treatment is included in the electricity use for Escondido. The electricity and GHG emissions have been subtracted from the electricity category, as they are accounted for in this water category.

In 2012, 93% of the GHG emissions in the water category were from upstream supply and conveyance. The breakdown of emissions for the water category is given in Figure 6.

![Figure 6 Emissions from the Water Category by Water System Segment (Escondido, 2012)](image)

The total potable and recycled water supplied, as well as the corresponding GHG emissions from the water category for the years 2012–2014 are given in Table 14.

45 City of Escondido is a member of the NSDWRC, which is a coalition of water and wastewater agencies in the Northern San Diego County. [Escondido 2015 Urban Water Management Plan](June 2016), Section 5 and Section 9.3 Water Sector Energy Intensity.
Table 14 Water Supplied and GHG Emissions from the Water Category (Escondido, 2012–2014)

<table>
<thead>
<tr>
<th>Year</th>
<th>Potable Water Supplied (Acre-Feet)</th>
<th>Recycled Water Supplied (Acre-Feet)</th>
<th>GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>23,698</td>
<td>401</td>
<td>11,000</td>
</tr>
<tr>
<td>2013</td>
<td>24,266</td>
<td>565</td>
<td>12,000</td>
</tr>
<tr>
<td>2014</td>
<td>24,047</td>
<td>626</td>
<td>13,000</td>
</tr>
</tbody>
</table>

GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

Emissions associated with water end-use, such as water heating and cooling, are included in the electricity and natural gas category, and not in this water category, as data are not available to separate out those values.

4.7 Wastewater

The emissions from wastewater generated by Escondido were estimated by multiplying the total amount of wastewater generated in a given year with the emission factor of the wastewater treatment processes.

The City owns and operates its own wastewater treatment and disposal facility, HARRF. HARRF treats wastewater from the City of Escondido, as well as the City of San Diego’s Rancho Bernardo community. The wastewater treatment emission factor at HARRF was not available; therefore, the emission factor at Encina Water Pollution Control Facility (Encina WPCF) was used as a proxy. The wastewater treatment GHG emissions and total wastewater flow for the Encina WPCF were provided by the Encina Wastewater Authority. In 2013, the Encina WPCF treated an average of 22.8 million gallons per day (MGD) with annual 11,359 MT CO₂e emissions. This resulted in an emission factor of 1.37 MT CO₂e/million gallons treated, which consists of emissions from: 1) stationary combustion of anaerobic digester gas; 2) process emissions from wastewater treatment with nitrification and denitrification; and 3) direct anaerobic digester gas. The wastewater emission factor derived from the Encina WPCF was applied to all wastewater flow in the City of Escondido. As similar data were not available for the other years, the emission factor was used as an estimate for all inventory years. The direct CO₂ from combustion of anaerobic digester gas is considered biogenic, while the other two components of CO₂ emissions are considered non-biogenic emissions.

The total wastewater treated at the centralized wastewater treatment plant, as well as the corresponding GHG emissions are given Table 15.

Table 15 Wastewater Generated and Treated at Centralized Treatment Plant (Escondido, 2012–2014)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Wastewater Generated (Million Gallons/year)</th>
<th>GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>3,675</td>
<td>5,034</td>
</tr>
<tr>
<td>2013</td>
<td>3,587</td>
<td>4,914</td>
</tr>
<tr>
<td>2014</td>
<td>3,443</td>
<td>4,717</td>
</tr>
</tbody>
</table>

46 2010–2015 wastewater (million gallons) flow from the City to HARRF was provided by City staff (March 2017).
In addition to wastewater collected and treated at the centralized treatment plant, approximately 1,500 homes (4,800 persons) within the City are on septic systems, the commonly used on-site wastewater treatment systems. The GHG emissions were estimated based on Method WW.11 (Methane Emissions from Septic Systems) from the U.S. Community Protocol. CH₄ emissions were calculated based on the total population served by septic systems (4,800) and a septic system CH₄ emissions factor (10.7 grams CH₄/person/day).

The total GHG emissions from the wastewater category are provided in Table 16.

<table>
<thead>
<tr>
<th>Year</th>
<th>GHG Emissions from Centralized Wastewater Treatment (MT CO₂e)</th>
<th>GHG Emissions from Septic Systems (MT CO₂e)</th>
<th>Total GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>5,034</td>
<td>469</td>
<td>6,000</td>
</tr>
<tr>
<td>2013</td>
<td>4,914</td>
<td>469</td>
<td>5,000</td>
</tr>
<tr>
<td>2014</td>
<td>4,717</td>
<td>469</td>
<td>5,000</td>
</tr>
</tbody>
</table>

GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.
CARB, 2017; City of San Diego, 2017; Energy Policy Initiatives Center, 2018.

5 BUSINESS-AS-USUAL GHG EMISSIONS PROJECTIONS

To inform the development of GHG reduction strategies within a jurisdiction’s Climate Action Plan (CAP), GHG emissions are projected using the baseline year from the GHG inventory, as well as estimates for population, housing, and job growth. This is used to develop a business-as-usual (BAU) projection, which demonstrates emissions growth in the absence of any new policies and programs. The latest year with available data may be different for different inventory categories. Next, emissions from federal and State policies and programs are applied in the future, creating a legislatively-adjusted BAU. Figure 7 provides an illustrative example of the difference between a BAU and a legislatively-adjusted BAU. Only the BAU projection is discussed in this document; GHG reductions from the policies and programs included in the legislatively-adjusted BAU are considered later in the climate action planning process.

47 The number of septic systems were estimated by City staff. From 2012 to 2014, on average the City has 3.2 persons per household based on the SANDAG Demographic & Socio-Economic Estimates (March 8, 2017 Version).
48 U.S. Environmental Protection Agency (EPA), Septic Systems. For a septic system, wastewater is treated through physical settling and biological activities only.
Section 5.1 provides a summary of the BAU emissions projections for years 2020, 2030, 2035, and 2050, and Section 5.2 provides the projection methodologies used for each category.

5.1 Emissions Projections for 2020, 2030, 2035, and 2050

The total GHG emissions in 2020 are projected to be 831,000 MT CO$_2$e, 12% lower than the 2012 emissions level and 5% lower than the 2014 emissions level. The total GHG emissions in 2030, 2035, and 2050 are projected to be approximately 833,000 MT CO$_2$e, 842,000 MT CO$_2$e, and 836,000 MT CO$_2$e respectively. Figure 8 below shows a comparison of the emissions breakdown by category for the inventory years (2012 and 2014) and projection years (2020, 2030, 2035, and 2050).
As shown in Figure 8, the on-road transportation category contributes the most to the overall emissions in each projection year. Emissions from on-road transportation are expected to decline through 2025 and then rise again but are not projected to be higher than the on-road transportation emissions in 2012 and 2014. One of the reasons for the decline of on-road transportation emissions is likely due to the decline of average vehicle emission rates as newer, more efficient vehicles replace old vehicles in the region. The total and distribution of projected emissions by category are presented in Table 17.
Table 17 Projected Total and Category-GHG Emissions in Escondido (2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>On-Road Transportation</th>
<th>Electricity</th>
<th>Natural Gas</th>
<th>Solid Waste</th>
<th>Off-Road Transportation</th>
<th>Water</th>
<th>Wastewater</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>445,000</td>
<td>187,000</td>
<td>126,000</td>
<td>30,000</td>
<td>26,000</td>
<td>11,000</td>
<td>6,000</td>
<td>831,000</td>
</tr>
<tr>
<td>2030</td>
<td>425,000</td>
<td>196,000</td>
<td>131,000</td>
<td>31,000</td>
<td>32,000</td>
<td>12,000</td>
<td>6,000</td>
<td>833,000</td>
</tr>
<tr>
<td>2035</td>
<td>427,000</td>
<td>199,000</td>
<td>133,000</td>
<td>31,000</td>
<td>33,000</td>
<td>12,000</td>
<td>6,000</td>
<td>842,000</td>
</tr>
<tr>
<td>2050</td>
<td>415,000</td>
<td>203,000</td>
<td>135,000</td>
<td>31,000</td>
<td>34,000</td>
<td>12,000</td>
<td>6,000</td>
<td>836,000</td>
</tr>
</tbody>
</table>

Sum may not add up to totals due to rounding.
Projected GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

5.2 Methods to Project GHG Emissions

The SANDAG Series 13 Regional Growth Forecast was used as the basis of population and job growth in Escondido, as shown in Table 18. The methods used to project future emissions are provided below for each emissions category.

Table 18 SANDAG Population and Job Growth Forecast (Escondido, 2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Commercial Jobs</th>
<th>Industrial Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>165,214</td>
<td>44,227</td>
<td>9,060</td>
</tr>
<tr>
<td>2030</td>
<td>172,332</td>
<td>46,702</td>
<td>9,214</td>
</tr>
<tr>
<td>2035</td>
<td>172,892</td>
<td>48,224</td>
<td>9,314</td>
</tr>
<tr>
<td>2050</td>
<td>173,625</td>
<td>49,532</td>
<td>9,361</td>
</tr>
</tbody>
</table>

5.2.1 On-Road Transportation

Average weekday O-D VMT forecast for each trip type in 2020, 2030, 2035, and 2050 were provided by SANDAG based on its Series 13 activity-based model, as shown in Table 19 (see Appendix A for the original data tables provided).

50 Population and jobs data are from the SANDAG Series 13 Regional Growth Forecast (Updated in October 2013). The number of jobs is for civilian jobs only and do not include military jobs. Industrial jobs include the job categories construction and manufacturing. Commercial jobs include all job categories except agriculture, construction and manufacturing. SANDAG Data Surfer, accessed on November 15, 2017.

51 Series 13 2020, 2030, 2035, and 2050 VMT average weekday projections were provided by SANDAG (March 23, 2017 and November 7, 2017). Original data tables provided by SANDAG are in Appendix A.
To convert VMT of each type to total VMT, the method discussed in Section 4.1 was used. The VMT was multiplied by the adjusted average vehicle emission rate derived from EMFAC2014 for each projection year. Two adjustments were made to the EMFAC2014 emission rates for the projections: 1) the electric vehicle penetration rate in 2016 was kept constant for all projection years;52 and 2) for all new vehicles entering the fleet after 2016, the emission rates are equal to the emission rates of new model year 2016 vehicles with the same vehicle class and fuel type.53

The projected total VMT, average vehicle emission rates, and corresponding GHG emissions from the on-road transportation category are given in Table 20.

Table 20 Projected VMT, Average Vehicle Emission Rate and GHG Emissions from On-Road Transportation Category (Escondido, 2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>Projected Total VMT</th>
<th>Average Vehicle Emission Rate (g CO\textsubscript{2}e/mile)</th>
<th>Projected GHG Emissions (MT CO\textsubscript{2}e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Weekday Miles</td>
<td>Average Annual Miles</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>3,112,320</td>
<td>1,079,974,943</td>
<td>412</td>
</tr>
<tr>
<td>2030</td>
<td>3,236,231</td>
<td>1,122,972,282</td>
<td>379</td>
</tr>
<tr>
<td>2035</td>
<td>3,268,652</td>
<td>1,134,222,071</td>
<td>377</td>
</tr>
<tr>
<td>2050</td>
<td>3,171,301</td>
<td>1,100,441,424</td>
<td>377</td>
</tr>
</tbody>
</table>

Projected GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

CARB, 2015; SANDAG, 2018; Energy Policy Initiatives Center, 2018.

As newer, more efficient vehicles replace older, less efficient vehicles in the region, the average vehicle emission rate decreases.

5.2.2 Electricity

Electricity use in the City was projected separately for the residential, commercial and industrial customer classes. For the residential customer class, the per-capita electricity use (metered electricity sales) in 2016 (1,733 kWh/person/year), the latest year with available SDG&E data, was calculated by

52 This uses a fixed 2016 electric vehicle penetration rate of about 2% of light duty vehicles instead of using the estimated impact of the state Zero Emission Vehicle (ZEV) program on BAU emissions. The 2016 electric vehicle penetration rate is based on EMFAC2014 Technical Documentation, Section 3.2.2.4.3. The ZEV program requires auto manufacturers to make and sell ZEVs that will increase VMTs driven by ZEVs.

53 This uses a fixed actual emission rate of the new 2016 models instead of the effect of adopted federal and state vehicle efficiency standards 2017–2025 for light-duty and heavy-duty vehicles.
dividing the total electricity sales in the residential class by the population in 2016. The per-capita electricity use is held constant and used to project BAU total electricity use for a future year by multiplying by the SANDAG Series 13 population forecast for the future year. The projected total electricity use was multiplied by the City-specific electricity emission factor in 2016 (560 lbs CO₂e/MWh), held constant, for a projected total GHG emission. The City-specific electricity emission factor in 2016 is significantly lower than that of 2012 and 2014 because SDG&E has since reached 43% renewable energy in its power mix.⁵⁴

A similar method was used for the commercial and industrial class. The total commercial BAU electricity use was projected based on Series 13 commercial job growth and the per-commercial job electricity consumption in 2016 (7,666 kWh/commercial job/year) held constant for all future years. The total industrial BAU electricity use was projected based on Series 13 industrial job growth and the per-industrial job electricity consumption in 2016 (7,144 kWh/industrial job/year) held constant for all future years.

The total projected net energy for load (electricity sales + transmission and distribution losses) and corresponding GHG emissions from the electricity category are given in Table 21.⁵⁵

<table>
<thead>
<tr>
<th>Year</th>
<th>Projected Net Energy for Load (electricity sales + losses) (MWh)</th>
<th>Projected GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>736,869</td>
<td>187,000</td>
</tr>
<tr>
<td>2030</td>
<td>771,497</td>
<td>196,000</td>
</tr>
<tr>
<td>2035</td>
<td>785,790</td>
<td>199,000</td>
</tr>
<tr>
<td>2050</td>
<td>798,241</td>
<td>203,000</td>
</tr>
</tbody>
</table>

Projected GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

5.2.3 Natural Gas

The projection method for the natural gas category is similar to that for the electricity category. The natural gas use in residential, commercial and industrial classes are calculated separately. The per-capita residential natural gas consumption (80 therms/person/year), per-commercial job natural gas consumption (170 therms/commercial job/year), and per-industrial job natural gas consumption (264 therms/industrial job/year) in 2016 were held constant with Series 13 population and job growth for the BAU projection. The natural gas emission factor used in Section 4.3 was held constant for future years. The projected total natural gas use and corresponding GHG emissions from the natural gas category are given in Table 22.

⁵⁴ 2016 renewable content in SDG&E bundled power is based on SDG&E’s 2016 power source disclosure report submitted to the California Energy Commission (CEC). The 2016 report was provided by CEC staff to EPIC in July 2017.

⁵⁵ The net energy for load of each future year is adjusted using the method described in Section 4.2. The net energy for load does not include self-serve renewable supply, such as electricity generation from behind-the-meter PV systems.
Table 22 Projected Natural Gas Use and GHG Emissions from Natural Gas Category (Escondido, 2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>Projected Total Natural Gas Use (Million Therms)</th>
<th>Projected GHG Emissions (MT CO\textsubscript{2}e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>23.1</td>
<td>126,000</td>
</tr>
<tr>
<td>2030</td>
<td>24.1</td>
<td>131,000</td>
</tr>
<tr>
<td>2035</td>
<td>24.5</td>
<td>133,000</td>
</tr>
<tr>
<td>2050</td>
<td>24.7</td>
<td>135,000</td>
</tr>
</tbody>
</table>

Projected GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

5.2.4 Off-Road Transportation

In the off-road transportation category, the direct output of OFFROAD2007 (lawn and garden equipment and light commercial equipment), RV2013 model (recreational equipment), and diesel-fueled portable equipment for the San Diego region were used and scaled down to Escondido based on the scaling factor as determined in Section 4.4. For the construction and industrial equipment sub-category, the In-Use Off-Road Equipment 2011 Inventory does not include emissions outputs after 2030. For the projection years 2020 and 2030, the direct output for the San Diego region from the model was used and scaled down to Escondido. For the years 2035 and 2050, the emissions were estimated based on the commercial and industrial job growth. The projected total and sub-category off-road transportation emissions are given Table 23.

Table 23 Projected GHG Emissions from Off-Road Transportation Category (Escondido, 2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>Recreational Equipment</th>
<th>Lawn and Garden Equipment</th>
<th>Light Commercial Equipment</th>
<th>Construction and Mining</th>
<th>Industrial</th>
<th>Diesel-Fueled Portable Equipment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>235</td>
<td>4,206</td>
<td>3,222</td>
<td>14,832</td>
<td>876</td>
<td>2,362</td>
<td>26,000</td>
</tr>
<tr>
<td>2030</td>
<td>277</td>
<td>4,720</td>
<td>3,400</td>
<td>19,707</td>
<td>1,030</td>
<td>2,845</td>
<td>32,000</td>
</tr>
<tr>
<td>2035</td>
<td>291</td>
<td>4,934</td>
<td>3,498</td>
<td>20,071</td>
<td>1,042</td>
<td>3,130</td>
<td>33,000</td>
</tr>
<tr>
<td>2050</td>
<td>293</td>
<td>5,150</td>
<td>3,391</td>
<td>20,401</td>
<td>1,047</td>
<td>3,435</td>
<td>34,000</td>
</tr>
</tbody>
</table>

Only total GHG emissions are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

5.2.5 Solid Waste

The BAU solid waste disposal by Escondido was projected using the population growth and the per-capita solid waste disposed in 2016 (2.7 kg/person/day), held constant for future years, to be consistent with other categories. The projected emissions from the disposal were calculated by multiplying the disposal amount with the emission factor for mixed solid waste, provided in Section 4.5. The projected total waste disposal and corresponding GHG emissions from the solid waste category are given in Table 24.
Table 24 Projected Solid Waste Disposal and GHG Emissions from Solid Waste Category (Escondido, 2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>Projected Solid Waste Disposal (MT)</th>
<th>Projected GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>161,248</td>
<td>30,000</td>
</tr>
<tr>
<td>2030</td>
<td>168,196</td>
<td>31,000</td>
</tr>
<tr>
<td>2035</td>
<td>168,742</td>
<td>31,000</td>
</tr>
<tr>
<td>2050</td>
<td>169,458</td>
<td>31,000</td>
</tr>
</tbody>
</table>

Projected GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

5.2.6 Water

The total water use for all BAU projection years was based on the fixed 2015 per-capita water use (as 2016 per-capita water use was not available) and Series 13 projected population growth. It is assumed that the current percentage of water from each supply source (SDCWA untreated water and local surface water) remains unchanged for the BAU projection. It is also assumed that no new recycled water sources or new potable water sources are developed under the BAU projection.

The per-capita potable water supplied in 2015 was 117 gallons/person/day, significantly lower than the amounts in 2012 and 2014 (144 gallons/person/day). The recycled water supplied in 2015, 531 acre-foot, was held constant for all projection years. The energy intensity for each segment of the water system (Table 13) and the electricity emission factor were held constant for all projection years. The projected total water supply and corresponding GHG emissions from the water category are given in Table 25.

Table 25 Projected Potable Water and GHG Emissions from the Water Category (Escondido, 2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>Projected Potable Water Supply (Acre-Feet)</th>
<th>Projected Recycled Water Supply (Acre-Feet)</th>
<th>Projected GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>21,739</td>
<td>531</td>
<td>11,000</td>
</tr>
<tr>
<td>2030</td>
<td>22,675</td>
<td>531</td>
<td>12,000</td>
</tr>
<tr>
<td>2035</td>
<td>22,749</td>
<td>531</td>
<td>12,000</td>
</tr>
<tr>
<td>2050</td>
<td>22,845</td>
<td>531</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Projected GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.

5.2.7 Wastewater

The total wastewater generation for all BAU projection years was based on the fixed 2015 per-capita wastewater generation use (62 gallons/person/day, as 2016 per-capita was not available) and Series 13 projected population growth. The emission factor derived from data based on the Encina Wastewater Authority (Section 4.7) was held constant for all projection years. It is assumed that the 1,500 homes that currently have on-site septic systems for wastewater treatment still use the systems and no new homes use septic systems in future years under the BAU projection.
The projected total wastewater treated at the centralized WWTP and the GHG emissions from the wastewater category are given Table 26.

Table 26 Projected Wastewater Generated and GHG Emissions from the Wastewater Category (Escondido, 2020, 2030, 2035, and 2050)

<table>
<thead>
<tr>
<th>Year</th>
<th>Projected Wastewater treated at Centralized WWTP (Million Gallons)</th>
<th>Projected GHG Emissions from Centralized Wastewater Treatment (MT CO₂e)</th>
<th>Projected GHG Emissions from Septic Systems (MT CO₂e)</th>
<th>Projected GHG Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>3,726</td>
<td>5,104</td>
<td>469</td>
<td>6,000</td>
</tr>
<tr>
<td>2030</td>
<td>3,886</td>
<td>5,324</td>
<td>469</td>
<td>6,000</td>
</tr>
<tr>
<td>2035</td>
<td>3,899</td>
<td>5,342</td>
<td>469</td>
<td>6,000</td>
</tr>
<tr>
<td>2050</td>
<td>3,915</td>
<td>5,364</td>
<td>469</td>
<td>6,000</td>
</tr>
</tbody>
</table>

Projected GHG emissions for each category are rounded to the nearest thousands. Values are not rounded in the intermediary steps in the calculation.
Appendix A. ESCONDIDO VMT BY TRIP TYPE

Average weekday VMT data tables were provided by SANDAG (from SANDAG ABM Series 13, Release 13.3.0). Revenue Constrained refers to the transportation network scenario adopted in San Diego Forward: The 2015 Regional Plan. Emphasis (red squares and text) was added by EPIC.

San Diego Forward: The 2015 Regional Plan was adopted by the SANDAG Board of Directors on October 9, 2015.
Figure A-3 Projected Escondido 2020 VMT by Trip Type

<table>
<thead>
<tr>
<th>JURISDICTION</th>
<th>TOTAL VMT</th>
<th>TOTAL City of Escondido VMT</th>
<th>Two Trip End City of Escondido VMT</th>
<th>One Trip End City of Escondido VMT</th>
<th>NON-City of Escondido VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlsbad Total</td>
<td>3,872,327</td>
<td>54,015</td>
<td>-</td>
<td>54,015</td>
<td>3,872,327</td>
</tr>
<tr>
<td>Chula Vista Total</td>
<td>4,092,103</td>
<td>9,869</td>
<td>-</td>
<td>9,869</td>
<td>4,092,103</td>
</tr>
<tr>
<td>Coronado Total</td>
<td>612,772</td>
<td>722</td>
<td>-</td>
<td>722</td>
<td>612,772</td>
</tr>
<tr>
<td>Del Mar Total</td>
<td>73,193</td>
<td>644</td>
<td>-</td>
<td>644</td>
<td>73,193</td>
</tr>
<tr>
<td>Encinitas Total</td>
<td>1,093,057</td>
<td>5,294</td>
<td>-</td>
<td>5,294</td>
<td>1,093,057</td>
</tr>
<tr>
<td>Escondido Total</td>
<td>3,800,909</td>
<td>1,653,139</td>
<td>645,168</td>
<td>1,208,591</td>
<td>1,145,683</td>
</tr>
<tr>
<td>External Total</td>
<td>194,117</td>
<td>2,034</td>
<td>-</td>
<td>-</td>
<td>194,117</td>
</tr>
<tr>
<td>Imperial Beach Total</td>
<td>93,944</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>93,944</td>
</tr>
<tr>
<td>La Mesa Total</td>
<td>1,590,128</td>
<td>4,809</td>
<td>-</td>
<td>4,809</td>
<td>1,590,128</td>
</tr>
<tr>
<td>Lemon Grove Total</td>
<td>832,029</td>
<td>569</td>
<td>-</td>
<td>569</td>
<td>832,029</td>
</tr>
<tr>
<td>National City Total</td>
<td>1,620,907</td>
<td>6,851</td>
<td>-</td>
<td>6,851</td>
<td>1,620,907</td>
</tr>
<tr>
<td>Ocean Beach Total</td>
<td>3,854,499</td>
<td>80,703</td>
<td>-</td>
<td>80,703</td>
<td>3,854,499</td>
</tr>
<tr>
<td>Poway Total</td>
<td>925,078</td>
<td>34,014</td>
<td>-</td>
<td>34,014</td>
<td>925,078</td>
</tr>
<tr>
<td>San Diego Total</td>
<td>39,019,437</td>
<td>1,070,663</td>
<td>-</td>
<td>1,070,663</td>
<td>37,948,774</td>
</tr>
<tr>
<td>San Marcos Total</td>
<td>1,971,319</td>
<td>694,019</td>
<td>-</td>
<td>694,019</td>
<td>1,277,300</td>
</tr>
<tr>
<td>San Dieguito Total</td>
<td>1,023,918</td>
<td>11,628</td>
<td>-</td>
<td>11,628</td>
<td>1,012,290</td>
</tr>
<tr>
<td>Solana Beach Total</td>
<td>643,319</td>
<td>2,047</td>
<td>-</td>
<td>2,047</td>
<td>641,272</td>
</tr>
<tr>
<td>Unincorporated Total</td>
<td>17,470,080</td>
<td>1,033,080</td>
<td>-</td>
<td>1,033,080</td>
<td>16,437,000</td>
</tr>
<tr>
<td>Vista Total</td>
<td>1,660,374</td>
<td>135,550</td>
<td>-</td>
<td>135,550</td>
<td>1,524,824</td>
</tr>
<tr>
<td>Regionwide Total</td>
<td>84,644,265</td>
<td>5,578,472</td>
<td>646,168</td>
<td>4,932,704</td>
<td>79,065,713</td>
</tr>
</tbody>
</table>

Figure A-4 Projected Escondido 2030 VMT by Trip Type

<table>
<thead>
<tr>
<th>JURISDICTION</th>
<th>TOTAL VMT</th>
<th>TOTAL City of Escondido VMT</th>
<th>Two Trip End City of Escondido VMT</th>
<th>One Trip End City of Escondido VMT</th>
<th>NON-City of Escondido VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlsbad Total</td>
<td>3,612,571</td>
<td>56,348</td>
<td>-</td>
<td>56,348</td>
<td>3,556,323</td>
</tr>
<tr>
<td>Chula Vista Total</td>
<td>4,707,744</td>
<td>11,916</td>
<td>-</td>
<td>11,916</td>
<td>4,695,828</td>
</tr>
<tr>
<td>Coronado Total</td>
<td>420,506</td>
<td>725</td>
<td>-</td>
<td>725</td>
<td>419,779</td>
</tr>
<tr>
<td>Del Mar Total</td>
<td>76,025</td>
<td>1,027</td>
<td>-</td>
<td>1,027</td>
<td>74,998</td>
</tr>
<tr>
<td>Encinitas Total</td>
<td>2,101,077</td>
<td>5,927</td>
<td>-</td>
<td>5,927</td>
<td>2,095,150</td>
</tr>
<tr>
<td>Escondido Total</td>
<td>2,672,611</td>
<td>1,373,229</td>
<td>650,422</td>
<td>1,023,207</td>
<td>1,248,394</td>
</tr>
<tr>
<td>External Total</td>
<td>222,083</td>
<td>2,718</td>
<td>-</td>
<td>2,718</td>
<td>219,365</td>
</tr>
<tr>
<td>Imperial Beach Total</td>
<td>93,177</td>
<td>61</td>
<td>-</td>
<td>61</td>
<td>93,116</td>
</tr>
<tr>
<td>La Mesa Total</td>
<td>1,755,164</td>
<td>4,872</td>
<td>-</td>
<td>4,872</td>
<td>1,750,292</td>
</tr>
<tr>
<td>Lemon Grove Total</td>
<td>857,490</td>
<td>491</td>
<td>-</td>
<td>491</td>
<td>856,999</td>
</tr>
<tr>
<td>National City Total</td>
<td>1,777,980</td>
<td>7,982</td>
<td>-</td>
<td>7,982</td>
<td>1,770,998</td>
</tr>
<tr>
<td>Ocean Beach Total</td>
<td>3,048,457</td>
<td>97,904</td>
<td>-</td>
<td>97,904</td>
<td>3,050,533</td>
</tr>
<tr>
<td>Poway Total</td>
<td>466,180</td>
<td>35,186</td>
<td>-</td>
<td>35,186</td>
<td>431,022</td>
</tr>
<tr>
<td>San Diego Total</td>
<td>61,786,278</td>
<td>1,502,820</td>
<td>-</td>
<td>1,502,820</td>
<td>60,283,458</td>
</tr>
<tr>
<td>San Marcos Total</td>
<td>2,215,656</td>
<td>661,133</td>
<td>-</td>
<td>661,133</td>
<td>1,554,523</td>
</tr>
<tr>
<td>San Dieguito Total</td>
<td>3,607,287</td>
<td>11,957</td>
<td>-</td>
<td>11,957</td>
<td>3,595,330</td>
</tr>
<tr>
<td>Solana Beach Total</td>
<td>660,909</td>
<td>2,741</td>
<td>-</td>
<td>2,741</td>
<td>658,168</td>
</tr>
<tr>
<td>Unincorporated Total</td>
<td>19,108,612</td>
<td>1,594,359</td>
<td>-</td>
<td>1,594,359</td>
<td>17,514,253</td>
</tr>
<tr>
<td>Vista Total</td>
<td>1,825,547</td>
<td>180,164</td>
<td>-</td>
<td>180,164</td>
<td>1,645,383</td>
</tr>
<tr>
<td>Regionwide Total</td>
<td>91,261,172</td>
<td>5,832,040</td>
<td>630,425</td>
<td>5,171,618</td>
<td>85,439,552</td>
</tr>
</tbody>
</table>
2035 Revenue Constrained

<table>
<thead>
<tr>
<th>JURISDICTION</th>
<th>TOTAL VMT</th>
<th>TOTAL City of Escondido VMT</th>
<th>Two Trip End City of Escondido VMT</th>
<th>One Trip End City of Escondido VMT</th>
<th>NON-City of Escondido VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARLSBAD TOTAL</td>
<td>3,668,094</td>
<td>56,594</td>
<td>56,594</td>
<td>56,594</td>
<td>3,612,500</td>
</tr>
<tr>
<td>CHULA VISTA TOTAL</td>
<td>4,783,453</td>
<td>12,701</td>
<td>12,701</td>
<td>4,783,453</td>
<td>4,702,752</td>
</tr>
<tr>
<td>CORONADO TOTAL</td>
<td>414,244</td>
<td>865</td>
<td>865</td>
<td>414,244</td>
<td>413,439</td>
</tr>
<tr>
<td>DEL MAR TOTAL</td>
<td>54,771</td>
<td>900</td>
<td>900</td>
<td>54,771</td>
<td>53,871</td>
</tr>
<tr>
<td>EL CAJON TOTAL</td>
<td>2,198,456</td>
<td>5,090</td>
<td>5,090</td>
<td>2,198,456</td>
<td>2,182,708</td>
</tr>
<tr>
<td>ENCINITAS TOTAL</td>
<td>1,951,030</td>
<td>32,982</td>
<td>32,982</td>
<td>1,951,030</td>
<td>1,938,294</td>
</tr>
<tr>
<td>ENCINITAS TOTAL</td>
<td>1,951,030</td>
<td>32,982</td>
<td>32,982</td>
<td>1,951,030</td>
<td>1,938,294</td>
</tr>
<tr>
<td>REGIONWIDE TOTAL</td>
<td>9,284,100</td>
<td>5,861,734</td>
<td>675,570</td>
<td>5,186,164</td>
<td>86,947,306</td>
</tr>
</tbody>
</table>

Figure A-5 Projected Escondido 2035 VMT by Trip Type

![Figure A-5 Projected Escondido 2035 VMT by Trip Type]

2050 Revenue Constrained

<table>
<thead>
<tr>
<th>JURISDICTION</th>
<th>TOTAL VMT</th>
<th>TOTAL City of Escondido VMT</th>
<th>Two Trip End City of Escondido VMT</th>
<th>One Trip End City of Escondido VMT</th>
<th>NON-City of Escondido VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARLSBAD TOTAL</td>
<td>3,204,253</td>
<td>51,482</td>
<td>51,482</td>
<td>3,204,253</td>
<td>3,105,781</td>
</tr>
<tr>
<td>CHULA VISTA TOTAL</td>
<td>3,166,857</td>
<td>10,850</td>
<td>10,850</td>
<td>3,166,857</td>
<td>3,155,094</td>
</tr>
<tr>
<td>CORONADO TOTAL</td>
<td>373,132</td>
<td>579</td>
<td>579</td>
<td>373,132</td>
<td>370,924</td>
</tr>
<tr>
<td>DEL MAR TOTAL</td>
<td>76,204</td>
<td>708</td>
<td>708</td>
<td>76,204</td>
<td>75,176</td>
</tr>
<tr>
<td>EL CAJON TOTAL</td>
<td>2,334,183</td>
<td>5,333</td>
<td>5,333</td>
<td>2,334,183</td>
<td>2,328,850</td>
</tr>
<tr>
<td>ENCINITAS TOTAL</td>
<td>1,908,017</td>
<td>10,445</td>
<td>10,445</td>
<td>1,908,017</td>
<td>1,903,272</td>
</tr>
<tr>
<td>ENCINITAS TOTAL</td>
<td>1,908,017</td>
<td>10,445</td>
<td>10,445</td>
<td>1,908,017</td>
<td>1,903,272</td>
</tr>
<tr>
<td>REGIONWIDE TOTAL</td>
<td>9,7,548,989</td>
<td>5,705,140</td>
<td>639,253</td>
<td>5,064,956</td>
<td>91,343,440</td>
</tr>
</tbody>
</table>

Figure A-6 Projected Escondido 2050 VMT by Trip Type

![Figure A-6 Projected Escondido 2050 VMT by Trip Type]
Appendix B. **SOURCE DATA FOR THE SOLID WASTE EMISSION FACTOR**

<table>
<thead>
<tr>
<th>Waste Component</th>
<th>Waste Distribution (%)(^1)</th>
<th>Landfill Gas Emissions</th>
<th>Source(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH(_4) without LFG</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery (MT CO(_2)/short ton)</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>16.8%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Corrugated Containers/Cardboard</td>
<td>5.0%</td>
<td>2.36</td>
<td>Exhibit 3-27, WARM v14 Containers /Packaging</td>
</tr>
<tr>
<td>Newspaper</td>
<td>0.8%</td>
<td>0.95</td>
<td>Exhibit 3-27, WARM v14 Containers /Packaging</td>
</tr>
<tr>
<td>Magazine</td>
<td>0.6%</td>
<td>1.08</td>
<td>Exhibit 3-27, WARM v14 Containers /Packaging</td>
</tr>
<tr>
<td>Mixed Paper (general)</td>
<td>10.4%</td>
<td>2.14</td>
<td>Exhibit 3-27, WARM v14 Containers /Packaging</td>
</tr>
<tr>
<td>Plastic</td>
<td>8.9%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>1.7%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>3.5%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Organics</td>
<td>38.9%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>15%</td>
<td>1.57</td>
<td>Exhibit 1-49, WARM V14 Organic Materials</td>
</tr>
<tr>
<td>Tree</td>
<td>5.3%</td>
<td>0.77</td>
<td>Exhibit 2-11 WARM V14 Organic Materials</td>
</tr>
<tr>
<td>Leaves and Grass</td>
<td>6.8%</td>
<td>0.59</td>
<td>Exhibit 2-11 WARM V14 Organic Materials</td>
</tr>
<tr>
<td>Trimmings</td>
<td>3.5%</td>
<td>0.59</td>
<td>Exhibit 2-11 WARM V14 Organic Materials</td>
</tr>
<tr>
<td>Mixed Organics</td>
<td>8.3%</td>
<td>0.53</td>
<td>Exhibit 2-11 WARM V14 Organic Materials</td>
</tr>
<tr>
<td>Electronics</td>
<td>0.6%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Construction & Demolition</td>
<td>24.6%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Household Hazardous Waste</td>
<td>0.2%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Special Waste</td>
<td>3.1%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mixed Residue</td>
<td>1.6%</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

Mixed Waste Emission Factor

Source: 1) [City of San Diego 2014](#),