GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION

July 18, 2012 Project No. 014-12085

Mr. Ron Recht Pacific Development Partners, LLC 501 Santa Monica Boulevard, No.312 Santa Monica, California 90401

RE: Report of Findings
Phase II Limited Site Assessment
Toyota of Escondido Property
231 East Lincoln Parkway
Escondido, California 92026

Dear Mr. Recht:

Pursuant to your request, Krazan & Associates, Inc. (Krazan) conducted a Phase II Limited Site Assessment (LSA) at the referenced property subject site (See Vicinity Map, Figure 1). The work was based strictly upon the Summary of Findings provided in a May 2011 Geosyntec Consultants *Phase I Environmental Site Assessment (ESA)* report for the referenced subject site provided by Comerica and discussions with the Comerica ERM unit and the borrower, Pacific Development Partners, LLC. The client-directed scope of work was reportedly conducted in conjunction with a real estate transaction and not by the request of a regulatory agency.

BACKGROUND

During the course of the referenced Phase I ESA research, Geosyntec identified the following "Site Conditions and Use:"

- The Site is currently developed with the former Toyota of Escondido automobile dealership, service center, and associated parking lots. The Site was developed with residences prior to the late-1960s when it was initially developed with an automobile dealership. The western portion of the Site consists of several paved parking lots and the eastern portion of the Site is developed with multiple buildings associated with the automobile dealership including offices and service bays. Since 2003 (when operations transferred to the current location) the Site has primarily been used for used car storage.
- Two (2) underground storage tanks (USTs), installed in 1967 or 1968, were formerly located in the central parking lot area between Buildings A and E1, and were removed under the direction of the County DEH in July 1986. The DEH inspector's notes during removal of the USTs indicated the USTs were in good condition with no indications of a release of hazardous materials or petroleum hydrocarbons to the subsurface.
- Two (2) used motor oil and hazardous materials storage areas were present at the Site. At the time of the Site reconnaissance, no oil or hazardous materials were present in these two areas which were reported by Geosyntec to be in good condition with no obvious signs of spills or significant releases.

- With the exception of minor staining in the compressor area, no evidence of spills or leaks was observed at the Site.
- Two (2) plugged clarifiers are present near the service bays. One clarifier was observed near the eastern end of the service bays, and one clarifier (could not be located during the Site reconnaissance) is reportedly located near the western end of the service bays.
- Approximately 16 single and dual-piston hydraulic hoists are located in the service bays at the Site. There were no reports of leaks or other incidents associated with the hoists, and no obvious signs of issues associated with the hoists were observed during the Site reconnaissance.

Client/Lender Direction

Comerica Bank provided the following March 29, 2012 email memorandum technical review summary of the referenced Geosyntec Phase I ESA report:

The following are the primary drivers of environmental risk associated with the subject Site:

- Lengthy history of automotive service facilities on-site (beginning circa 1968) with related use and storage of hazardous materials, generation of hazardous wastes, and existence of hydraulic lifts and clarifiers.
- Potential for subsurface contamination in soil and groundwater related to historical chemical use and storage on the subject property.
- Given the long term use of hazardous materials/petroleum products on-site, releases may have occurred that have not been reported and/or detected.
- The possible presence of residual contamination in the former UST locations.

Recommendations:

A Phase II ESA should be conducted to address the potential subsurface impacts of the historic automotive service facility. Areas of concern (AOCs) include, but are not limited to, the service bay hydraulic lifts, floor drains, clarifiers, historic well and former UST areas.

Proposals to conduct the Phase II ESA should be requested from Comerica-listed consultants. The scope-of-work from the selected consultant should be submitted to ERM for review prior to commencement of work.

According to a May 23, 2012 email directive from the Comerica ERM, the following scope of work comments were provided:

- A site plan with boring locations should be provided with the Phase II proposal.
- Assuming the depth to groundwater is equal to or greater than 18 feet below ground surface (bgs), the two borings planned at the waste storage areas to 10 feet bgs should be preferably taken down to at least 15 feet bgs.

PHASE II LIMITED SITE ASSESSMENT

Purpose

This Phase II LSA was conducted to investigate the client/lender-directed scope of work associated with the subject site. To investigate the potential for impacts to the subject site from the historical automotive

service operations including the former waste oil USTs, hazardous materials storage are, plugged clarifiers, hydraulic hoists and hand dug well, soil borings were advanced and soil and groundwater samples were collected. The following methodology was conducted:

General Methodology:

- Krazan prepared a site-specific health and safety plan.
- Krazan obtained a soil boring permit from the San Diego County Environmental Health Department, Site Mitigation Unit (SAM). A copy of the permit is provided in Appendix A.
- Soil borings were advanced using a Geoprobe direct-push rig and soil and groundwater samples were collected. Soil boring logs are provided in Appendix B.
- Underground Services Alert was contacted to locate public underground utilities in the public right-of-way associated with USA subscribers.
- A geophysical subcontractor was contracted to aid in determining the possible location of the former hand dug well and to clear the proposed soil boring locations of underground utilities.
- Soil samples were collected in laboratory-grade containers, labeled and identified on a chain of custody form, and were immediately placed in a chilled ice chest.
- Groundwater samples were collected using a peristaltic pump and were immediately placed in laboratory prepared containers for the specific method requested.
- Soil and groundwater samples were transferred to SunStar Laboratories, Inc. of Lake Forest, California, a State-certified analytical laboratory, under chain of custody protocol for analysis of selected samples.

PHASE II LSA SCOPE OF WORK

Pursuant to the Second Revised Phase II LSA Proposal/Cost Estimate prepared by Krazan, dated May 23, 2012, which was approved by Comerica ERM and the client, and authorized by agreement dated May 29, 2012, the following scope of work was conducted in the area of the former plugged clarifiers, hazardous materials storage areas, waste oil USTs, hydraulic hoists, former hand dug well, and linear floor drains (Refer to Site Map Figure 2 for referenced locations):

Geophysical Survey

• On June 1, 2012, a geophysical survey of the site was conducted by Pacific Coast Locators, Inc. (PCL) of La Crescenta, California to assess the location of the former hand dug well and to clear the proposed soil boring locations. The geophysical survey utilized the following methodology:

Geophysical Survey Systems SIR 3000 Utility Scan Ground Penetrating Radar (GPR) system and RD 4000 Electro-Magnetic Conductor and Schonstedt Magnetometer were used to survey the Site and off-site areas, as applicable, to locate the presence of subsurface abandoned pipe(s) at the Site. GPR survey scan sends a dielectric signal into the earth, which registers with the density of the soil that it is penetrating. Any other material of varied density will either speed up the signal creating an inverted hyperbola or slow it down leaving a hyperbola trail. This is similar to a rock in a creek. The water bends around the rock leaving a tail wake. The GPR signal is not bending however; it is sending back a continuous signal of the curvature of the anomaly it encounters.

RD 4000 Electro-Magnetic Conductor has Inductive & Conductive capability to locate buried conductive underground utilities, such as copper, steel and galvanized metal water pipes, electrical lines, power lines, telecommunication lines, metal and steel gas lines, and steel and metal pipelines. The RD 4000 features include multiple active frequencies to delineate actively the depth & location of the target utility or pipe. The RD 4000 receiver has a peak & null gain

feature that pinpoints the target utility or pipe in congested areas. The audible signal to noise feature makes it easy for the locating technician to determine accurately the location of a directly connected utility or pipe by sound.

Schonstedt GA-52C Magnetometer: This magnetometer detects the magnetic field of iron and steel objects, and energized power lines. The GA-52C provides audio detection that peaks in frequency when the magnetometer tip is held directly over the ferrous metal object.

Soil Borings

Two (2) Plugged Clarifiers

- On June 18, 2012, soil borings B-1 and B-2 were advanced in the area of the two (2) plugged clarifiers to depths of 24 and 20.5 feet, respectively. Soil samples were collected by direct push at five (5) foot intervals beginning at five (5) feet bgs, the bottom sample in B-1 was collected at 24 feet bgs and at 20.5 feet bgs in B-2.
- The soil samples collected at 5, 10 15, 20, and 24 feet bgs from boring B-1 and at 5 and 10 feet bgs in boring B-2 were analyzed for total petroleum hydrocarbons as gasoline (TPH-g), as diesel (TPH-d), and as motor oil (TPH-mo) by EPA Method 8015C. The samples at 15 and 20 feet bgs in B-1 were also analyzed for volatile organic compounds (VOCs) by EPA Method 8260B and for total lead by EPA Method 6010B. The deeper samples in B-1 were analyzed due to field screening evidence of the presence of petroleum hydrocarbon constituents (PHCs) at 15 feet bgs.

Two (2) Hazardous Materials Storage Areas

- On June 18, 2012, soil borings B-3 and B-4 were advanced in the areas of the two (2) former hazardous materials storage areas to depths of 20 and 25 feet bgs, respectively. Soil samples were collected by direct push at five (5) foot intervals beginning at five (5) feet bgs, the bottom sample in B-3 was collected at 20 feet bgs and at 25 feet bgs in B-4.
- The soil samples collected at 5 and 10 feet bgs from borings B-3 and B-4 were analyzed for TPH-g, TPH-d and TPH-mo by EPA Method 8015C. The samples at 10 feet bgs in B-3 and 5 feet bgs in B-4 were also analyzed for VOCs by EPA Method 8260B and for total lead by EPA Method 6010B.

Two (2) Former Waste Oil USTs

- On June 18, 2012, soil borings B-5 and B-6 were advanced in the areas of the two (2) former USTs to depths of 25 and 24 feet bgs, respectively. Soil samples were collected by direct push at five (5) foot intervals beginning at five (5) feet bgs, the bottom sample in B-5 was collected at 25 feet bgs and at 24 feet bgs in B-6.
- The soil samples collected at 10 and 15 feet bgs from borings B-5 and B-6 were analyzed for TPH-g, TPH-d and TPH-mo by EPA Method 8015C. The samples at 10 feet bgs in borings B-5 and B-6 were also analyzed for VOCs by EPA Method 8260B and for total lead by EPA Method 6010B.

Hydraulic Hoists

• On June 18, 2012, soil boring B-7 and on June 19, 2012, soil borings B-8, B-10 and B-11, were advanced in the areas of the hydraulic hoists to 22 feet bgs for B-7, 24 feet bgs for B-8 and 10 feet bgs for borings B-10 and B-11. Soil samples were collected by direct push at five (5) foot intervals beginning at five (5) feet bgs, the bottom sample in boring B-7 was collected at 22 feet bgs, at 25 feet bgs in B-8 and 10 feet bgs in borings B-10 and B-11.

• The soil samples collected at 10, 15 and 20 feet bgs in boring B-7, 10 and 15 feet in B-8 and 5 and 10 feet bgs in borings B-10 and B-11 were analyzed for TPH-g, TPH-d and TPH-mo by EPA Method 8015C. The samples at 15 and 20 feet in boring B-7 and 10 feet bgs in borings B-8, B-10 and B-11 were also analyzed for VOCs by EPA Method 8260B and for total lead by EPA Method 6010B. In addition, samples at 15 feet bgs in boring B-7 and 10 feet bgs in borings B-8, B-10 and B-11 were analyzed for CAM 17 metals by EPA Methods 6010B and 7470/7471. Finally, the sample from 15 feet bgs in boring B-7 was analyzed for PCBs by EPA Method 8082.

Former Hand Dug Water Well

- On June 19, 2012, soil boring B-9 was completed in the area of the former hand dug water well to a depth of 20 feet bgs. Soil samples were collected by direct push at five (5) foot intervals beginning at five (5) feet bgs, the bottom sample in boring B-9 was collected at 20.
- The soil samples at 15 and 20 feet bgs in boring B-9 was analyzed for TPH-g, TPH-d and TPH-mo by EPA Method 8015C and for VOCs by EPA Method 8260B. The sample at 15 feet bgs was also analyzed for CAM 17 metals by EPA Methods 6010B and 7470/7471.

Linear Drains

- On June 19, 2012, soil borings B-12 and B-13 were advanced near the linear drains to a depth of five (5) feet bgs. Soil samples were collected at five (5) feet bgs in each boring.
- The soil samples at five (5) feet bgs in borings B-12 and B-13 were analyzed for TPH-g, TPH-d and TPH-mo by EPA Method 8015C, for VOCs by EPA Method 8260B and for total lead by EPA Method 6010B.

Groundwater Sampling

- Grab groundwater samples were collected from borings B-1, B-2, B-3, B-4, B-5, B-8, and B-9. Attempts were made to collect groundwater samples from borings B-6 and B-7; however, groundwater did not enter the borings even after an 8 to 24 hour time frame.
- The groundwater samples were analyzed for TPH-g, TPH-d and TPH-mo by EPA Method 8015C, for VOCs by EPA Method 8260B and for total lead by EPA Method 6010B

APPLICABLE REGULATORY AGENCY REFERENCES

Krazan's evaluation of the results and findings associated with the soil and groundwater sampling included referencing the November 2007 (Revised May 2008) San Francisco Regional Water Quality Control Board's (SFRWQCB) environmental screening levels (ESLs) referenced in the technical document titled, Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater.

According to the RWQCB's 2007 document, ESLs are considered to be conservative. Under most circumstances and within limits described by the RWQCB, the presence of a chemical in soil, soil-vapor, or groundwater at concentrations below the corresponding ESL can be assumed not to pose a significant, long-term (chronic) threat to human health and the environment. Additional evaluation will generally be necessary at sites where a chemical is present at concentrations above the corresponding ESL. Active remediation may or may not be required, however, depending on site-specific conditions and considerations. As stated by the RWQCB, the ESL document may be especially beneficial for use at sites

with limited impacts, where the preparation of a formal environmental assessment may not be warranted or feasible due to time and cost constraints.

For the purposes of evaluating specific COCs, Krazan also referred to the September 2009 and November 2009 (Ethylbenzene only) technical documents prepared by the California Environmental Protection Agency (Cal/EPA) titled Use of California Human Health Screening Levels in Evaluation of Contaminated Properties. The California Human Health Screening Levels (CHHSLs) are concentrations of 54 hazardous chemicals in soil, shallow soil gas, and indoor air that the Cal/EPA considers to be below thresholds of concern for risks to human health. The CHHSLs were developed by the Office of Environmental Health Hazard Assessment (OEHHA) on behalf of Cal/EPA, and are contained in a Cal/EPA report titled Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil. The thresholds of concern used to develop the CHHSLs are an excess lifetime cancer risk of one-in-a-million (10⁻⁶) and a hazard quotient of 1.0 for non-cancer health effects. The CHHSLs were developed using standard exposure assumptions and chemical toxicity values published by the U.S. EPA and Cal/EPA. CHHSLs can be used to screen sites for potential human health concerns where releases of hazardous chemicals to soils have occurred. Under most circumstances, and within the limitations described in the January 2009 documents, the presence of a chemical in soil, shallow soil vapor, and/or indoor air at concentrations below the corresponding CHHSLs can be assumed to not pose a significant health risk to people who may live (Residential CHHSLs) or work (Commercial/Industrial CHHSLs) at the site. It should be noted, CHHSLs are not regulatory "cleanup standards" and regulatory agencies cannot be compelled to use the CHHSLs as final cleanup standards for a contaminated property.

REPORT OF FINDINGS

The laboratory analytical results for soil and groundwater results are summarized on Tables I and II, respectively. The laboratory data for the metals and PCB samples are tabulated on Table III. The laboratory report is presented in Appendix C.

Geophysical Survey

- The geophysical survey did not detect the presence of the former hand dug well in the inferred location identified by Geosyntec. On June 19, 2012, Krazan contacted Mr. Scott Whitehead, General Manager of Toyota of Escondido, who had informed Geosyntec of the former hand dug well in an interview that was part of the May 2011 Phase I ESA. Mr. Whitehead visited the subject property and placed the location of the hand dug well inside the current buildings on site instead of outside the southwest corner of the southernmost building. Thus, the geophysical survey was not conducted in the correct location, however, Mr. Whitehead stated he was 100% sure of the location of the former hand dug well.
- The soil boring locations were cleared of underground utilities.

General Field Observations

- Soil types consisted primarily of fine grained silt, silty clay, and clayey silt with lesser amount of poorly- and well-graded sand. Refusal due to the presence of a decomposed granite/clayey silt was encountered in borings B-1, B-4, B-5, B-6, and B-8 at 24 feet bgs, borings B-2 at 20.5 feet bgs, and boring B-7 at 22 feet bgs. Soil boring logs are provided in Appendix B.
- Groundwater was present at about 12 to 15 feet bgs; however in the borings (B-1, B-5, B-6, and B-7) drilled on the northern end of the subject property, groundwater entered the boring so slowly

or not at all such that we were unable to obtain groundwater samples in boring B-5 and B-6. In addition, the borings were drilled deeper than originally planned because there was no indication of groundwater in the borings until well below 12 to 15 feet bgs.

Plugged Clarifiers - Borings B-1 and B-2

- The laboratory results of the soil samples collected from borings B-1 and B-2 were reported as not detected (ND) for TPH-g, TPH-mo, VOCs and total lead. TPH-d was detected in soil samples collected from borings B-1 (5 and 10 feet bgs) and B-2 (5 and 10 feet bgs) ranging up to a maximum of 25 milligrams per kilogram (mg/kg). The laboratory reported that the TPH-d concentrations detected in the soil samples "...for the hydrocarbon range is due to the presence of a single analyte peak(s) in the quantitation range. It does not resemble the requested pattern."
- The laboratory results of the groundwater samples collected from borings B-1 and B-2 were ND for TPH-mo, VOCs and lead. TPH-g was detected at 5,100 micrograms per liter (µg/l) in boring B-1 and ND in B-2; TPH-d was reported at 2,100 µg/l in boring B-1 and was ND in B-2.

Hazardous Materials Storage Areas – Borings B-3 and B-4

- The laboratory results of the soil samples collected from borings B-3 and B-4 were reported as ND for TPH-g, TPH-mo, VOCs and total lead. TPH-d was detected in soil samples collected from borings B-3 (5 and 10 feet bgs) and B-4 (5 feet bgs) ranging up to a maximum of 31 mg/kg. The laboratory error message was the same for the TPH-d detections in borings B-3 and B-4.
- The laboratory results of the groundwater samples collected from borings B-1 and B-2 were ND for TPH-g, TPH-d, TPH-mo, VOCs, and lead.

Former Waste Oil USTs – Borings B-5 and B-6

- The laboratory results of the soil samples collected from borings B-5 and B-6 were reported as ND for TPH-g, TPH-mo, VOCs and total lead. TPH-d was detected in soil samples collected from borings B-5 (10 and 15 feet bgs) and B-6 (10 feet bgs) ranging up to a maximum of 35 mg/kg. The laboratory error message was the same for the TPH-d detections in borings B-3 and B-4
- The laboratory results of the groundwater samples collected from boring B-5 were ND for TPH-g, TPH-d, TPH-mo, VOCs, and lead. As previously discussed, a groundwater sample could not be collected from boring B-6.

Hydraulic Hoists – Borings B-7, B-8, B-10, and B-11

- The laboratory results of the soil samples collected from borings B-7 and B-8 were reported as ND for TPH-g, TPH-mo, VOCs and total lead. TPH-d was detected in soil samples collected from borings B-7 (10 and 15 feet bgs) and B-8 (10 and 15 feet bgs) ranging up to a maximum of 25 mg/kg. The laboratory error message was the same for the TPH-d detections in borings B-7 and B-8. TPH-g, TPH-d, TPH-mo, VOCs and total lead were ND for borings B-10 and B-11.
- Various metals (barium, chromium, cobalt, copper, vanadium, and zinc) were detected in borings B-7 (15 feet bgs), B-8 (10 feet bgs), B-10 (10 feet bgs), and B-11 (10 feet bgs). However, none of the results exceeded the regulatory screening levels. PCBs were ND in boring B-7 at 15 feet bgs.

• The laboratory results of the groundwater samples collected from boring B-8 were ND for TPH-g, TPH-d, TPH-mo, VOCs, and lead. As previously discussed, a groundwater sample could not be collected from boring B-7.

Former Hand Dug Water Well - Boring B-9

- The laboratory results of the soil samples collected from boring B-9 were reported as ND for TPH-g, TPH-mo, VOCs and total lead. TPH-d was detected in soil samples collected from borings B-9 (15 feet bgs) at 25 mg/kg. The laboratory error message was the same for the TPH-d detections in borings B-9.
- Various metals (barium, chromium, cobalt, copper, lead, vanadium, and zinc) were detected in borings B-7 (15 feet bgs), B-8 (10 feet bgs), B-10 (10 feet bgs), and B-11 (10 feet bgs). However, none of the results exceeded the regulatory screening levels.
- The laboratory results of the groundwater samples collected from boring B-9 were ND for TPH-g, TPH-d, TPH-mo, VOCs, and lead.

Linear Drains – Borings B-12 and B-13

• The laboratory results of the soil samples collected from boring B-12 and B-13 were reported as ND for TPH-g, TPH-d, TPH-mo, VOCs and total lead.

Adjacent Site

A 7-11 Store (No. 22894) is located adjacent to the northeast of the subject site across North Broadway. The 7-11 Store has a historical release of fuel hydrocarbons from USTs that dates back to 1998. Historically, hydrocarbon-impacted groundwater (TPH-g maximum of 70,000 µg/l in 2003) has been present in well MW-8 located approximately 100 east of the subject site. According to Stantec¹ (May 2012), the groundwater flow direction is to the southeast that would make the site hydrogeologically cross-gradient from the subject site. There is no well directly between the 7-11 site and the subject site, so it is unknown if the hydrocarbons from the 7-11 site may have impacted the groundwater beneath the subject site.

CONCLUSIONS AND RECOMMENDATIONS

Based on the findings in the field, and the laboratory analytical reports for the soil and groundwater samples collected and analyzed during this Phase II LSA, no evidence of known significant impact (based on a comparison with the available regulatory screening levels) of the COCs investigated in the areas assessed was identified with respect to subsurface soil and groundwater associated with the subject site, with the exception of the TPH-g and TPH-d groundwater sample results reported for boring B-1.

Due to the TPH-g and TPH-d concentrations in groundwater exceeding their respective ESL screening levels in boring B-1, Krazan recommends that further assessment be conducted in the area of boring B-1 to delineate the extent of hydrocarbon-impacted groundwater. Krazan recommends that at least three (3) to four (4) additional borings be completed in the vicinity of boring B-1 that would include the

¹ 2012. Stantec Consultant Services, Inc. Groundwater Monitoring and Remediation Progress Report, 7-11 Store No. 22894, May 4, 2012.

construction of temporary wells due to the very slow recharge of groundwater in this portion of the subject site. One (1) of the borings would be located to assess whether or not the hydrocarbon release from the 7-11 site may have impacted the subject site. Krazan further recommends that soil vapor samples be collected at five (5) feet bgs in each location to determine if soil vapor has impacted the subject site due to the reported elevated TPH-g and TPH-d concentrations.

LIMITATIONS

This Phase II LSA conducted at the subject site was not intended to characterize or define the extent of possible impact beneath the site; rather, this work was conducted to assess the presence or absence of significant concentrations of COCs. The findings of this report were based upon the results of our field and laboratory investigations, along with the interpretation of subsurface conditions associated with our samples and borings. Therefore, the data are accurate only to the degree implied by review of the data obtained and by professional interpretation.

The exploratory soil and groundwater samples and borings were located in the field by review of available maps. Therefore, the location of the samples and borings should be considered accurate only to the degree implied by the methods used to locate them. Chemical testing was done by laboratories certified by the State of California Department of Health Services. The results of the chemical testing are accurate only to the degree of care of ensuring the testing accuracy and the representative nature of the soil samples obtained.

This client-directed subsurface investigation of the subject site has been limited in scope. This type of assessment is undertaken with the calculated risk that the presence, full nature, and extent of contamination would not be revealed by methods employed. Therefore, no warranty is given, either expressed or implied, that hazardous material contamination or buried structures, which would not have been disclosed through this investigation, do not exist at the subject site. Therefore, the data obtained are clear and accurate only to the degree implied by the sources and methods used.

The limited geophysical survey equipment is considered a state-of-the-art technology that is effective within certain limitations for the investigation of buried features such as septic tanks, fuel bunkers, USTs, and/or piping. In uncommon or atypical cases where bunkers or tanks are buried at depths greater than two feet below ground surface and/or which may be covered by layers of pavement cumulatively in excess of two to four inches in thickness, rock, gravel or aggregate layers, dense (clayey) soils, or other surface or subsurface metallic objects (such as motor vehicles, fencing, piping, conduit or rebar) that can interfere with the electrical transmission/reception of the equipment, the equipment's technical capabilities can be exceeded to a degree where the presence of a UST or other metallic feature could not be detected. No guarantee is made or implied that the geophysical survey will detect suspected metallic features under uncommon or atypical circumstances as described above, or that the discovery of underground piping or conduit commonly found underlying commercial properties in and of itself is evidence of the presence of USTs. It should be understood that the location of subsurface objects and utilities is dependent upon the recognition of physical phenomena at the ground surface. These phenomena can be magnetic fields or electromagnetic waves that give rise to a surface expression which in turn is interpreted as representative of subsurface objects. These waves, however, may be attenuated and/or distorted by a number of factors including soil moisture, corrosion, and proximity to other surface and subsurface facilities. The findings presented herewith are based on professional interpretation using state of the art methods and equipment and a degree of conservatism deemed proper as of this report date. It is not warranted that such data cannot be superseded by future geotechnical, environmental, or technical developments.

This assessment and report were authorized by and prepared for the exclusive use of our client. Unauthorized use of or reliance on the information contained in this report without the expressed written consent of Krazan & Associates, Inc. is strictly prohibited.

CLOSING

We appreciate the opportunity to be of service to Pacific Development Partners, LLC. If you have any questions, or if we can be of further assistance, please feel free to contact me at (559) 348-2200.

Respectfully Submitted, KRAZAN & ASSOCIATES, INC.

Michael H. Bowery, P.G. No. 5027 Senior Project

MHB/apl Attachments

Figure 1 – Vicinity Map

Figure 2 – Site Map

Appendix A – Boring Permit

Appendix B – Soil Boring Logs

Appendix C – Laboratory Analytical Reports

TABLE IToyota of Escondido Property
Escondido, California

June 18 and 19, 2012 Soil Sampling Results – Hydrocarbons, VOCs, and Lead (Concentrations are expressed in milligrams per kilogram [mg/kg])

Sample No. and					
Depth in feet bgs	TPH-g	TPH-d*	TPH-mo	VOCs	TOTAL LEAD
B-1 @ 5'	ND	24	ND		
B-1 @ 15'	ND	25	ND	ND	ND
B-1 @ 20'	ND	ND	ND	ND	ND
B-1 @ 24'	ND	ND	ND		
B-2 @ 5'	ND	20	ND		
B-2 @ 10'	ND	25	ND	ND	ND
B-3 @ 5'	ND	24	ND		
B-3 @10'	ND	26	ND	ND	ND
B-4 @ 5'	ND	31	ND	ND	ND
B-4 @ 10'	ND	ND	ND		
B-5 @ 10'	ND	35	ND	ND	ND
B-5 @15'	ND	30	ND		
B-6 @ 10'	ND	28	ND	ND	ND
B-6 @ 15'	ND	ND	ND		
B-7 @ 10'	ND	23	ND		
B-7 @ 15'	ND	25	ND	ND	ND
B-7 @ 20'	ND	ND	ND	ND	ND
B-8 @ 10'	ND	25	ND	ND	ND
B-8 @ 15'	ND	24	ND		
B-9 @ 15'	ND	25	ND	ND	ND
B-9 @ 20'	ND	ND	ND	ND	
B-10 @ 5'	ND	ND	ND		
B-10 @ 10'	ND	ND	ND	ND	ND
B-11 @ 5'	ND	ND	ND		
B-11 @ 10'	ND	ND	ND	ND	ND
B-12 @ 5'	ND	ND	ND	ND	ND
B-13 @ 5'	ND	ND	ND	ND	ND
ESL (Table C-2)	83	83	5,000	Various	750
CHHSLs	NE	NE	NE	NE	3,500

ND = Not Detected at or above the laboratory reporting limit

NE = Not Established

^{-- =} Not Analyzed for this Analyte

^{*} The result for the hydrocarbon range is due to the presence of a single analyte peak(s) in the quantitation range. It does not resemble the requested pattern

ESLs – Commercial Industrial Deep Soil Screening Levels (California Regional Water Quality Control Board, San Francisco Bay Region – Revised May 2008; Table C-2)

TABLE IIToyota of Escondido Property
Escondido, California

June 18 and 19, 2012 Groundwater Sampling Results – Hydrocarbons, VOCs and Lead (Concentrations are expressed in micrograms per liter [µg/l])

Sample No.	TPH-g	TPH-d	TPH-mo	VOCs	Lead
B-1	5,100	2,100	ND	ND*	ND
B-2	ND	ND	ND	ND	ND
B-3	ND	ND	ND	ND	ND
B-4	ND	ND	ND	ND	ND
B-5	ND	ND	ND	ND	ND
B-8	ND	ND	ND	ND	ND
B-9	ND	ND	ND	ND	ND
ESLs (Table F-1a)	100	100	100	Various	2.5

ND = Not Detected at or above the laboratory reporting limit

TABLE III

Toyota of Escondido Property
Escondido, California

June 18 and 19, 2012 Soil Sampling Results – CAM 17 Metals and PCBs (Concentrations are expressed in milligrams per kilogram [mg/kg])

Sample No. and Depth in feet bgs	B-7 @ 15'	B-8 @ 10'	B-9 @ 15'	B-10 @ 10'	B-11 @ 10'	CHHSLs ¹	ESLs ²
Antimony	ND	ND	ND	ND	ND	380	310
Silver	ND	ND	ND	ND	ND	4,800	3,900
Arsenic	ND	ND	ND	ND	ND	0.24	15
Barium	36	72	50	46	63	63,000	2,600
Beryllium	ND	ND	ND	ND	ND	1,700	98
Cadmium	ND	ND	ND	ND	ND	7.5	39
Chromium	4.7	6.4	4.5	8.8	6.8	NE	5,000
Cobalt	3.8	6.5	3.2	4.8	5.1	3,200	94
Copper	2.2	3.8	3.5	4.5	6.3	3,800	5,000
Lead	ND	ND	ND	5.0	ND	3,500	750
Mercury	ND	ND	ND	ND	ND	180	58
Molybdenum	ND	ND	ND	ND	ND	4,800	3,900
Nickel	ND	2.9	ND	3.1	3.2	16,000	260
Selenium	ND	ND	ND	ND	ND	4,800	3,900
Thallium	ND	ND	ND	ND	ND	63	62

^{-- =} Not analyzed for this parameter

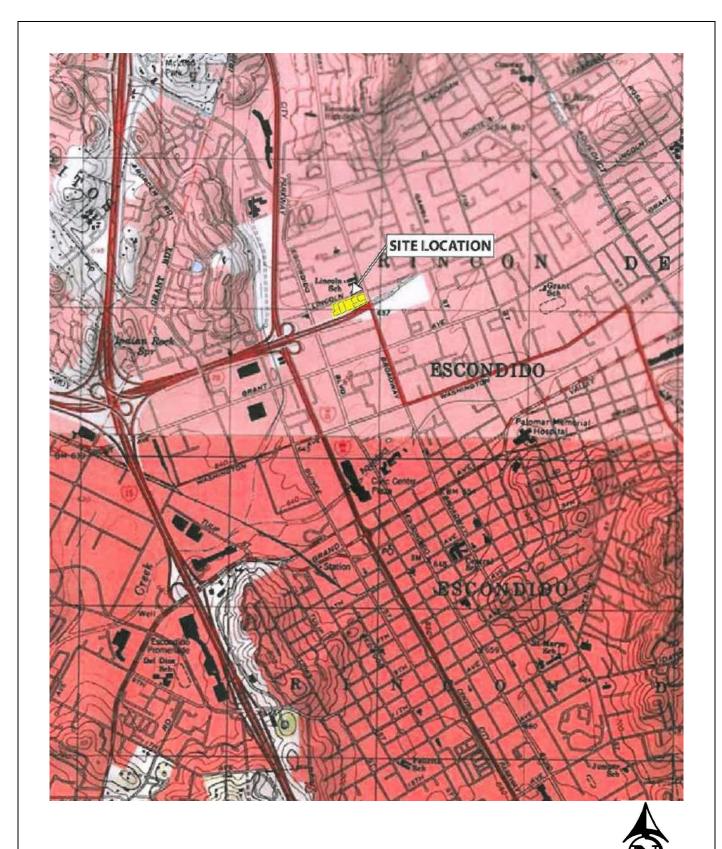
^{*} sec-Butylbenzene detected at 2.1 μ g/l (ESL Not Established)

TABLE III (cont.)

Toyota of Escondido Property Escondido, California

June 18 and 19, 2012 Soil Sampling Results – CAM 17 Metals and PCBs

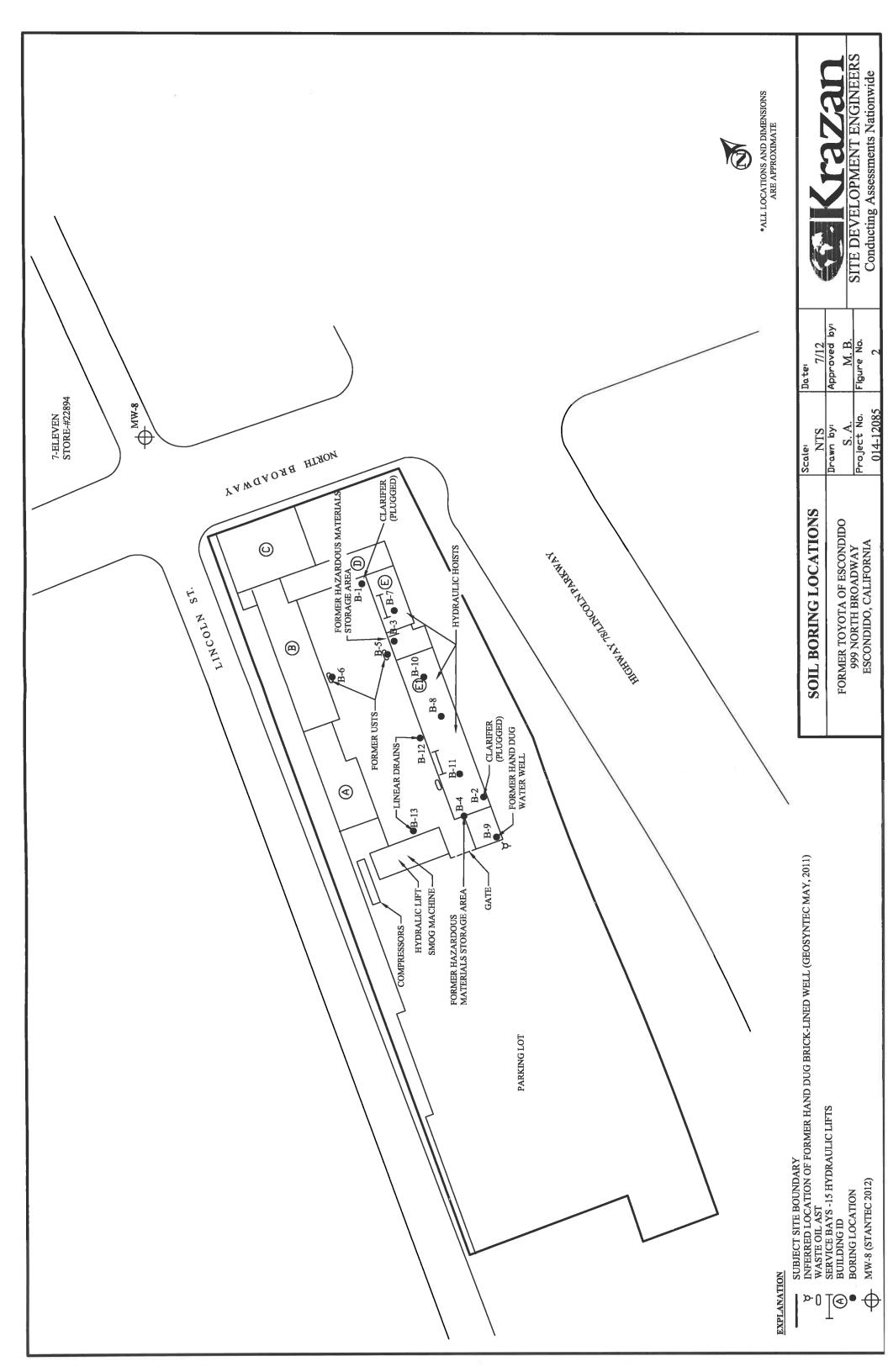
(Concentrations are expressed in milligrams per kilogram [mg/kg])


Sample No. and Depth in feet bgs	B-7 @ 15'	B-8 @ 10'	B-9 @ 15'	B-10 @ 10'	B-11 @ 10'	CHHSLs ¹	ESLs ²
Vanadium	28	36	50	33	25	6,700	770
Zinc	44	33	28	36	31	10,000	5,000
PCBs	ND					0.3	

NE = Not Established; ND = Not Detected above Method Detection Limit

^{1:} CHHSLs — Commercial/Industrial California Human Health Screening Levels for Indoor Air and Soil Gas (CalEPA — September and November 2009)

^{2:} ESLs – Commercial/Industrial Deep Soil Screening Levels (California Regional Water Quality Control Board, San Francisco Bay Region – Revised May 2008; Table C-2)


⁻⁻ Not Analyzed for this Analyte

Source: Geosyntec Consultants, Inc

VICINITY MAP	Scale:	Date:
	NTS	July 2012
TOYOTA OF ESCONDIDO PROPERTY 231 E. LINCOLN PARKWAY	Drawn By: AL	Approved by MB
ESCONDIDO, CA 92026	Project No.	Figure No.
	014-12085	1

PERMIT APPLICATION GROUNDWATER AND VADOSE MONITORING WELLS AND EXPLORATORY OR TEST BORINGS

OFFICE USE ONLY PERMIT LMON #
SAM CASE Y/N # DATE RECEIVED:
FEE PAID:

100	AND EXPLORATORY	TURTEST BORINGS	A STATE A PARTY	
			CHECK#	
r			<u> </u>	
.A. RESPONSIBLE P	ARTY Garrick Motors In	c. -	E-mail	
scottwhitehead@	<u>lyotaeecondido,com</u> or company responsible for line or	onstruction, maintenance, and destructi	on of the proposed borings a	raller make)
			State CA	
Contact Person S	cott Whitehead	Phone	760-746-0801	Ext.
B. SITE ASSESSME	NT PROJECT NUMBER -	IF APPLICABLE #		
C. CONSULTING FIR	M Krazan & Associates In	Ē.		
Mailing Address 2 Registered Profes	eional Michael Bowery	City <u>Clovis</u> Phone <u>559-34</u>	State <u>CA</u> 8-2200 Registration s	Zip <u>93612-</u> 5027 (PG)
Contact Person M	wery@Krazan.com Ichael Bowery			
Phone 559-86	32-6144 Ext. NA	E mail betala at Parame		
THE SECTION OF THE SE	32-6144 Ext. NA	E-mail <u>Michael Bowery</u>		
	NY Strongarm Environme			766463
Contact Name Dar	ren Zuiderna	E-mail <u>darren@</u>	Sironoameny.com	
Mailing Address 13 Phone 562-40	1562 Purnice Street 14-6656	City Norwalk	State <u>CA</u>	Zip <u>90850-</u>
E. CONSTRUCTION I	NFORMATION			
TYPE OF WELLS!	MATERIA	LS TO BE USED	PROPOSED CO	METRICTION
BORINGS TO BE	CASING	SEAL/BORING	Estimated groundy	
CONSTRUCTED		BACKFILL	Estimated depth	
Groundwater	Not Applicable X	☐ Neet Coment	Concrete	Q to S
Vadose	Type	Cement & Bentonite	surface seal	7 6 9
∑ Boring 9	Gauge	Sand-Cement Bentonite	Annular seal	Marian.
Other	Well Screen Size	Cther		0 to 18
			Bentonite	Ω to 18
NUMBER OF WELLS	Filter Pack	Borehols diameter 2"	transitio[] seal	
TO BE DESTROYED	Parities	ng Method	Filter Pack	to
7	☐ Auger	Air Rotary	Perforation	to
	☐ Mud Rotary	⊠ Other	NOT	
	Percussion		Attach a well constru for wells with multipl	ection diagram
agree to comply with the	e requirements of the curre in Diego and the State of C	ent Site Assessment and Mitigs allfornia periaining to well/borin	tion Manual, and with a	fl ordinances and
3 ·	0 -0	•		i
RILLER'S SIGNATURE	12-26		DATE5.31-	12

Within 50 days of completion, I will furnish the Mentioring Well Permit Dock with a complete and accurate well/bering log. I will certify the design and construction or destruction of the well/borings in accordance with the permit application.

RG/RCE/CEG SIGNATURE

DATE 5/31/20/2_

F. SITE INFORMATION				
1. ASSESSOR'S PARCEL NUMBER 229-121-1 Site Name Garrick Motors Inc. Site Address 989 N Broadway PROPERTY OWNER Garrick Motors, Inc.	- City	Escondido	Zp <u>92078</u> -	
Phone 780-745-0601 Mailing Address 281 Lincoln Parkyay 62026	Ext NA	Fex 760-746-9690 City Escondido	State <u>CA</u>	చ ు
NUMBER OF WELLS 4	TYPE OF W	ELLS Hydronunch		
2. ASSESSOR'S PARCEL NUMBER 229-121-12 Sits Name Garrick Motors Inc.				**************************************
Site Address 929 N. Broadway		Escondido	Zip <u>92026-</u>	
PROPERTY OWNER Garrick Motors, Inc. Phone 760-743-0801 Mailing Address 231 Lincon Parkway 2026-	Ext. <u>NA</u>	Fax <u>760-746-9500</u> City <u>Escondido</u>	State <u>CA</u>	Zp
NUMBER OF WELLS 2-	TYPE OF WE	LLS <u>Hydronunch</u>		
3. ASSESSOR'S PARCEL NUMBER 229-121-14 Site Name Garrick Motors Inc. Site Address 999 N. Broadway	Cay 2	98 N Broadway	Zıp <u>92</u>	026-
PROPERTY OWNER Garrick Motors, Inc. Phone 790-755-0501 Maiing Address 231 Lincon Parkway 726-	Ext <u>NA</u>	Faz <u>780-748-9599</u> City <u>Escondido</u>	State <u>CA</u>	Zφ
NUMBER OF WELLS 3	TYPE OF WEL	LS Hydrapunch		

4. ASSESSOR'S PARCEL NUMBER NA Site Name NA

Site Address NA

City NA

Zip

PROPERTY OWNER NA

Phone <u>NA</u> Mailing Address <u>NA</u>

Ext. NA

Fax <u>NA</u> State <u>NA</u> City NA

Zip

NUMBER OF WELLS

TYPE OF WELLS NA

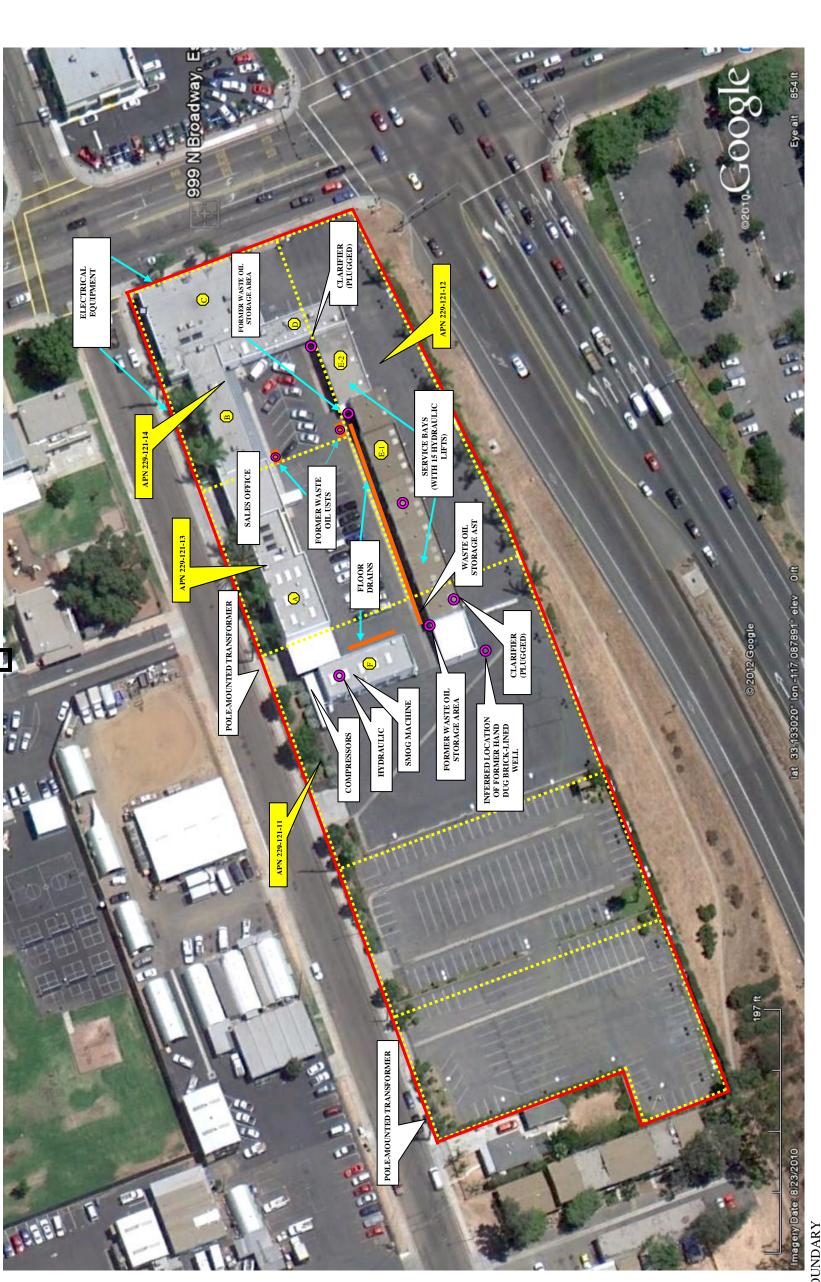
ACTIVITY	FEE SCHEDULE		AMOUN	T
Permit for Well Installations Only (Groundwater Monitoring Wells, Vadose, Vapor Extraction Wells)	\$200.00 for the first monitoring well			\$200.00
Permit for Well Maintenance Inspection (Valid for three years)	\$99.00 for first well maintenance inspection			\$99.00
Each Additional New Well	\$161.00 for each additional well installation	х	\$161.00	\$
	\$ 30 00 for each additional well maintenance inspection	x	\$ 30.00	\$

Permit for Borings Only (CPT's, Hydropunch, Geoprobes, Temporary Well Points, etc.)	\$200.00 for the first boring\$ 49.00 for each additional boring	1 x	\$200.00 \$ 49.00	\$200,00 \$392,00
Permit for Well Destructions Only	\$200.00 for the first destruction \$123.00 for each additional destruction	x	\$200.00 \$123.00	\$ \$
Permit for any Combination of Well Installations, Borings, & Destructions (except UST backfill permit)	The first activity will be \$200.00 Additional activities will be as follows:	x	\$200.00	\$
	\$151.00 for each additional well \$99.00 for first well maintenance inspection	x	\$161.00 \$ 99.00	\$ \$
	\$ 30.00 for each additional well maintenance inspection	x	\$ 30.00	\$
	\$123.00 for each well destruction \$ 49.00 for each additional boring	x	\$123.00 \$ 49.00	\$ \$
Permit for Underground Storage Tank Monitoring System in Backfill (i.e. Enhanced Leak Detection)	\$320.00 (Flat Fee)			\$
	TOTAL COST OF PERMIT			\$592.00

H.	Q	JESTIONNAIRE: Please answer all applicable questions completely. For well destructions, complete only #1 below and submit any required supportive documentation.
	1.	If wells are to be destroyed, provide a description of method of destruction NA.
	2.	What is the purpose of the well/boring investigation?
		a. Part of an ongoing site assessment case in which a government regulator is the lead agency. If yes, indicate which government regulator is the lead agency and the case number.
		DEH RWQCB DTSC
		☑ b. Part of a Phase I investigation for property ownership transfer or: Phase II
		C. Geotechnical investigation for proposed construction, land stabilization or:
		d. Other:
	3.	What procedures will be used to prevent the well/boring from providing an avenue to contamination during construction? Following collection of the water sample, each boring will be back filled with bentonite as soon as practical
	4.	What field procedures will be utilized to determine if contamination exists? PID, visual and odor
	5.	What procedures will be used to determine whether samples will be sent for laboratory testing or archiving? Field screening as above for soil samples, a water sample from each boring will be analyzed
	6.	What constituents will be monitored and tested (Include EPA Laboratory Test Methods to be used)? <u>TPH Full</u> Scan 8015C, VOCs 8260B, PCBs 8082, and Metals 6010B/7471
	7.	How will samples be transported and preserved? <u>Samples will be placed on ice and hand delivered to the laboratory by the sampler</u>
i	В.	What sampling methods will be used? <u>Direct-Push</u>
,		Are you proposing a variation from the methods and/or procedures presented in the requirements for the construction or destruction of Vadose and Groundwater Monitoring Wells (Current SAM Manual Requirements)? If yes, specify these variations and include a well construction diagram and all required supporting documentation. Refer to the SAM Manual Appendix B for monitoring well guidelines www.sdcdeh.org). Yes \(\Bar{\text{No}}\) No \(\Bar{\text{No}}\)
1	ļ	Are you proposing a variation in drilling and destruction of soil borings from the methods and/or procedures specified in the current SAM manual? If yes, specify these variations and include a destruction diagram.
1	1. \	What procedures will be used to ensure that the drilling equipment will introduce no contamination? Triple inse decontamination with distilled water and Alconox

12. What methods will be used to clean sampling equipment? Triple rinse decontaminand Alconox	nation with distilled water
13. What cleaning method will be used to clean casing and screen prior to installation?	<u>M</u>
14. A Property Owner Consent (POC) agreement is required for all applications, LOP/SAM site assessment cases, Caltrans properties and military properties.	except for onsite, open

County of San Diego


JACK MILLER DIRECTOR

DEPARTMENT OF ENVIRONMENTAL HEALTH LAND AND WATER GUALITY DIVISION MONITORING WELL PROGRAM

P.D. SGE 126261, SAN DISCO, GA 92112-9261 266-506-5790/1-600-263-9632 PAX: 858-565-6601 www.addshb.org ELIZABETH POZZEBÓR ASSISTANT DIRECTOR

PROPERTY OWNER CONSENT

Proposed locations for subsurface work:	
Property Address:	Assessor's Percel Number (APN):
999 North Broadway, Escondido, CA 92028	229-121-11121314
I, Scatt Whitehead, Owner of Garrick Motors, Inc owner of the & Associates, Inc. (consulting company, contractor) to conduct	property/properties listed above, give my permission to <u>Krazan</u> the following work at the locations stated above.
☐ Install monitoring wells ☐ Destroy	monitoring walls 🗵 Drill <u>9</u> soil borings
I understand that Michael Bowery (registered professional) of authorized signer for Strongarm Environmental Field Services. Department of Environmental Health in which they have agreed of the current SAM Manual, all ordinances and laws of the Cowell/boring construction and destruction. I have arranged with monitoring wells/borings installed or existing wells destroyed excells/borings. Property Owner Signatures.	(drilling company) have submitted a signed application to the to complete the above-stated work according the requirements ounty of San Diego and the State of California pertaining to th the Responsible Party, the person who causes to have
Print Name: Scott Whitehead Title: Owner, General Manager	
Company, Garrick Motors, Inc.	
Meiling Address: 231 Lincoln Parkivay, Escondido, CA 92028	

PROPERTY BOUNDARY

PROPOSED BORING LOCATION

R
BUILDING ID

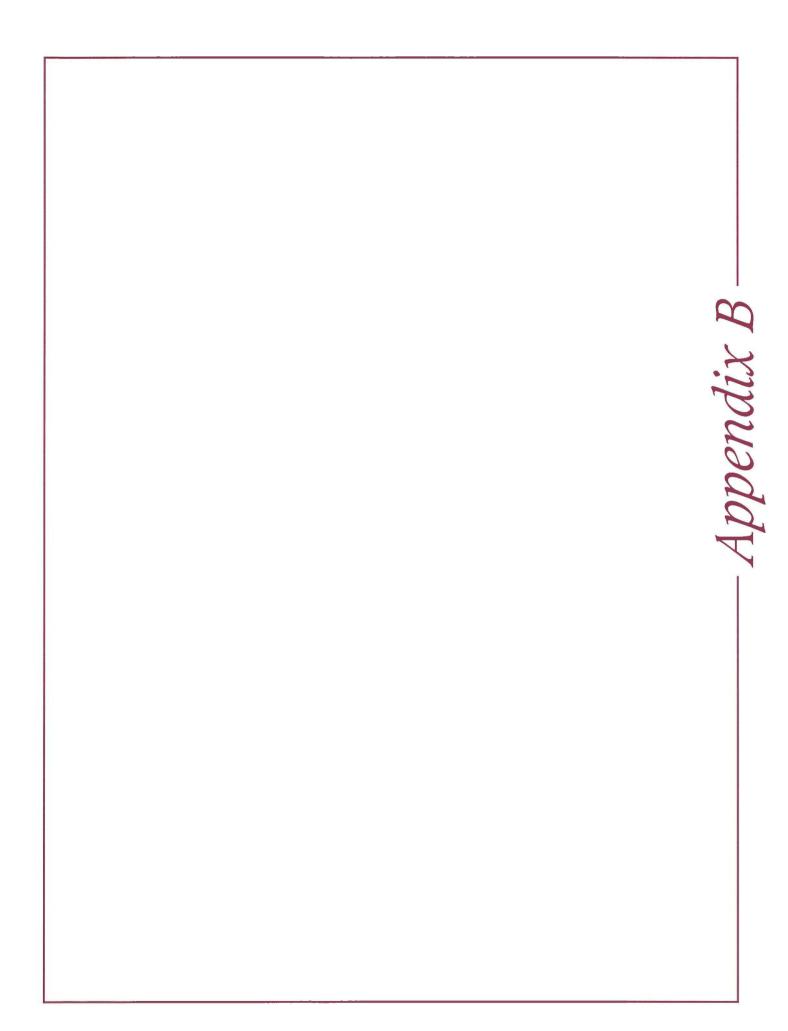
PROPOSED HYDROPUNCH BORING LOCATIONS	FORMER TOYOTA OF ESCONDIDO 999 NORTH BROADWAY ESCONDIDO, CALIFORNIA
PROPOSED]	FORM

STTE DEVELOPMENT ENGINEEDS	Conducting Assessments Nationwide
----------------------------	-----------------------------------

May 2012

NTS

Scale:


Drawn By:

Date:

Approved by:

Figure No.

Project No. 014-12085

PROJEC	Т: То	yota o	of Esc	cond	dido					oring No. Project No. 0	11/1-19	B-1			
DATE DRI	LED:							TYPE OF BORING:		roject No. c	714-12	005			
		June 1	8. 20	012					Soil/Gro	undwater					
DRILLING								ELEVATION & DATUM		dild Water	LOGG	GED BY:			
		oProb		20D	т							M. Bowery			
SAMPLING								DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:			
		Direc	t Pus	h								211110.			
	T				Б	Ę	T				-	<u> </u>			
Elevation Depth (Ft)	Odor	PID (ppmv)	Undisturbed Sample	Blow Count	Graphic Log	Soil Classification			SOIL DESCI	RIPTION					
_						SP-		\1" concrete.							
-						SC		ase.							
_							Sa	andy Clay (SP-SC); reddi	dy Clay (SP-SC); reddish-brown, very fine, moist, trace silt.						
-5															
ľ	No	0.7				sc	Cla	ayey Sand (SC); reddish	-brown, very f	ine, moist, mid	caceou	S.			
							l								
	ı														
L	ļ														
-10															
["	No	0.9				ML	Sil	t (ML); medium brown,	trace very fine	sand, moist.					
						1									
- 15			!												
13	Yes	114					Sil	t (ML); moderately gree	n.						
-20	l Na	0.6					0.11								
-	No	0.6			i.		5111	t (ML); mottled reddish-	brown w/black	nodules.					
-															
_															
- 25			1				Ret	fusal at 24', bedrock (de	ecomposed gra	nite/silty clay)	, light y	yellow			
-			1				DIO	own.	BOTTOM OF	BORING					
-		100													
_															
		İ													
-30						í									
-			1			}									
_				ĺ	ĺ										
					1										
- 35															
_ 33															
			1												

PROJECT	Γ : Το [,]	yota o	of Esc	ond	lido			Boring No. B-2 Project No. 014-12085				
DATE DRIL	LED:			—				TYPE OF BORING:	110	Ject No. o	14-120	J85
		June 18	8. 20	012					Soil/Ground	dwater		
DRILLING I	EQUIP	MENT	:					ELEVATION & DATUM		4444101	1	GED BY:
		oProbe	e 662	20D	<u>T</u>						<u>L</u>	M. Bowery
SAMPLING	i MET							DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:
		Direct		-		-						
Elevation Depth (Ft)	Odor	Old (hudd)	Undisturbed Sample	Blow Count	Graphic Log	Soil Classification			SOIL DESCRIF	NOITY		
-	No				1///	sc		" concrete.				
F						1		" base.				
- - -5	No	0						layey Sand (SC); reddish				
-						ML	Cla	layey Silt (ML); reddish-b	prown, trace very	fine sand, n	nicaceo	ous, damp.
-10 - - - -15	No	0				CL	Sil	ilty Clay (CL); reddish-bro	own, trace very f	ine sand, mid	caceou	is, damp.
-20	No	0				ML	mo	andy Silt (ML); brown, tra oist.		e sand, mica	iceous	, very
_	No	0			-	SW	Sa	and (SW); light brown, ve	ery coarse, wet.			
-							_ Ke	efusal at 20.5'.	воттом ог во	RING	_	
- 25 -			i									
- -30 - -												
-35 -												

PRO	JECT	Г: То	yota o	of Esc	cond	ido			Boring No. B-3 Project No. 014-12085								
DATE	DRIL	LED:							TYPE OF BORING:		0,000 110. 0	17 12					
			lune 1	8. 20	112					Soil/Grou	ndwater						
DRILL	ING E		MENT						ELEVATION & DATUM		TIG VI GIO	Logo	GED BY:				
			oProb		20D.	т				•			M. Bowery				
SAM	PLING			0 00.	200				DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:				
			Direc	t Due	·h					1	J COM L		24 11110.				
		T	Direc		_			т—		<u> </u>			1				
	ation h (Ft)	Odor	Old (hudd)	Undisturbed Sample	Blow Count	Graphic Log	Soil	i		SOIL DESCR	IPTION						
	-	No					SM		concrete.								
								-	base.								
	- 5	No								ty Sand (SM); reddish-brown, very fine to medium, micaceous, dry.							
		No	0				ML	Sil	(ML); reddish-brown, trace very fine sand, micaceous.								
	-10	No	0				SC	Cl	avov Sand (SC), light ar	oon brown war	u fina miasas						
	-						30	Cla	ayey Sand (SC); light gr	een-brown, ver	y fine, micace	ous, m	ioist.				
	- - -																
	- 15	No	0				SM	Sil	ty Sand (SM); greenish-	brown very fin	e very moist						
	- 20																
	20	No	0				SW	Sa	nd (SW); light yellow-br	own, trace orar	nge, trace silt,	very f	ine to				
								_me	edium coarse, interbedde	ed w/silt green, BOTTOM OF B							
	- - 25 -									BOTTOW OF B	DUNING						
	-30																
	- -35 -																
	-																

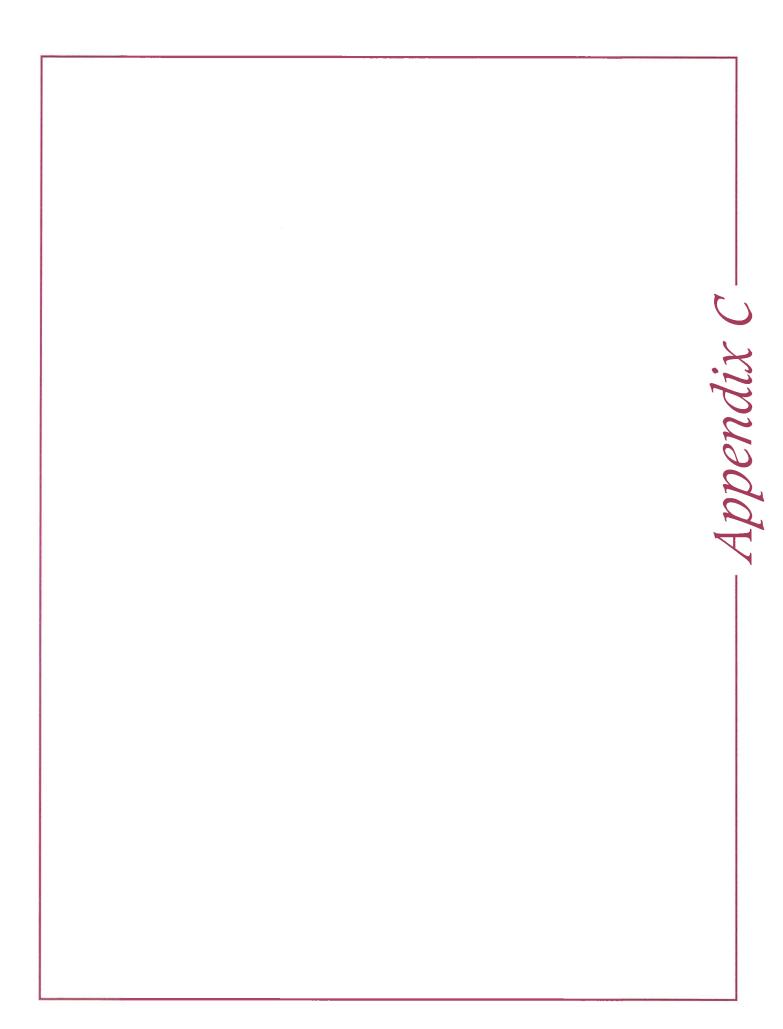
PROJECT	f: To	yota o	f Esc	ond;	lido					ng No. ject No. O	14-12	B-4		
DATE DRIL	LED:							TYPE OF BORING:	1101	GOL NO. C	14-12	365		
<u>-</u>	J	June 18	8, 20)12					Soil/Ground	dwater				
DRILLING E								ELEVATION & DATUM			LOGO	GED BY:		
	Ge	oProbe	e 662	20D	т _							M. Bowery		
SAMPLING	MET	HOD:						DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:		
		Direct	t Pus	h										
Elevation Depth (Ft)	Odor	(\nudd)	Undisturbed Sample	Blow Count	Graphic Log	Soil			SOIL DESCRIP	TION				
-	No					SC	1"	" concrete. " base.						
- - - - 5	No	0					Sa	andy Clay (SC); reddish-b						
-10	No	0				ML		it (ML); mottled yellowisi						
- - - - 15	No	0				CL	Sil	lty Clay (CL); gray-browr						
- - - 20 - -	No	0	7				Silt mo	ty Clay (CL); gray-brown, trace very fine sand, micaceous, very bist.						
25 - - -							Ref	fu sal at 24 ', bedrock (de	ecomposed granit BOTTOM OF BOR	e/silty clay), RING	brown	n-yellow.		
30 - - -														
-35 - -														

PROJECT	Γ: Ιο	yota o	1 Esc	ono	obit				Boring No. B-5 Project No. 014-12085					
DATE DRIL	LED:						_	TYPE OF BORING:		Ject No. o	14-120	700		
	J	June 18	8, 20)12					Soil/Ground	dwater				
DRILLING E	QUIP	MENT	:					ELEVATION & DATUM	l:		LOGO	GED BY:		
		oProbe	e 662	20D	<u>T</u>							M. Bowery		
SAMPLING	MET							DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:		
		Direct	_	_	1									
Elevation Depth (Ft)	Odor	Old (Amdd)	Undisturbed Sample	Blow Count	Graphic Log	Soil			SOIL DESCRIP	NOIT				
-	ĺ					CL		" asphalt.						
-5	No	0				ML		ilty Clay (CL); reddish-bro						
-							me	andy Silt (ML); yellowish-brown, very fine trace clay, micaceous, poist. andy Silt (ML); yellowish-brown, very fine trace clay, micaceous, poist. ty Clay (CL); brown, trace very fine sand, very moist.						
- 10	No	0					Sa							
15 -	No	0				CL	•							
- 20 - -	No	0				SC	Cla	ayey Sand (SC); brown,	very fine, very m	noist.		,, , , , , , , , , , , , , , , , , , , ,		
- 25 - -	No	0					Re	efusal at 24', bedrock (de	ecomposed grani BOTTOM OF BO	te/silty clay). RING				
-30														
-35 - -		ļ												

PROJEC1	;̄: Το [,]	yota o	f Esc	ond	lido			Boring No. B-6 Project No. 014-12085								
DATE DRIL	LED:		—				—	TYPE OF BORING:	ΓIC	oject No. o	14-120	385				
D		June 18	8. 20	012				THE OF BOTTING	Soil/Grour	ndwater						
DRILLING E								ELEVATION & DATUM		Idvidio.	TLOGG	GED BY:				
	Ge	oProbe	e 66;	20D	·Τ						1	M. Bowery				
SAMPLING								DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:				
		Direct	t Pus	ih												
Elevation Depth (Ft)	Odor	OIG (yuud)	Undisturbed Sample	Blow Count	Graphic Log	Soil			SOIL DESCRI	PTION						
- 5	No	0				CL	Sil	" asphalt. ilty Clay (CL); reddish-bro andy Clay (SC); reddish-b								
- - - -10	No	0				ML			t (ML); yellowish-brown, trace very fine sand and clay, damp.							
- - - - -15	No	0				SC			ayey Sand (SC); yellowish-brown, very fine to medium, moist.							
- - - - 20	No	0								0		st.				
-	No	0				CL		Ity Clay (CL); reddish-bro			·					
- 25 - - -							Ke	efusal at 24', bedrock (de	ecomposed gran BOTTOM OF BO	ite/silty clay). ORING	•					
-30 - -																
-35																

PRO)JEC	Γ : Το	oyota o	of Esc	ond	lido			Boring No. B-7 Project No. 014-12085						
DAT	E DRIL	LED:							TYPE OF BORING:	1101	BULINO. U	14-12	.085		
			June 1	8, 20	012					Soil/Ground	dwater				
DRIL	LING		PMENT		-				ELEVATION & DATUM		477-4-13	LOG	GED BY:		
		Ge	oProbe	e 6 <u>6</u> :	20D	т							M. Bowery		
SAM	IPLING								DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:		
			Direct	t Pus	sh _					1					
	vation th (Ft)	Odor	Old (bpmv)	Undisturbed Sample	Blow Count	Graphic Log	Soil			SOIL DESCRIP	TION				
	}					***	SC	1"	" concrete. " base.						
	-						30		layey Sand (SC).	 					
	-							J	dyey danu (de).						
	-			'			4								
	-5	No	0			1/1//	1	-	Cond (CNV), doub by constitution						
	-	INC					SW	Sa	and (SW); dark brown/black, very coarse, damp.						
				'											
	† .,			'	'										
	10	No	0	1	'		CL	Sa	andy Clay (CL); green-bro	own, trace silt, ve	ery fine, moi	ist.			
		'		1	1	11///]		•	-	,	-			
			1		1 '	11///	1	1							
	ļ	!	1		1 '		1								
	<u> </u>	'	1		1		1								
	- 15	No	0		1 /		sc	Cla	ayey Sand (SC); brown,	trace silt, very fir	ne to mediur	m, ver	v moist.		
		!	1 '		1			1				• •	,		
			'	1 1				1							
	'		1		1			1							
	+ 1		1		1 1			1							
	-20	No	0		1			Cla	ayey Sand (SC); brown,	trace silt, very fir	ne to mediur	n, ver	y moist.		
	ļ. <i>!</i>		1 1	1	1			l	34						
		No	0			FILE		Ref	efusal at 22', bedrock (de	scomposed granit BOTTOM OF BO	:e/silty clay). RING				
	25		1		1	1 1		1							
	- 25	1	1 1		(i							
			1	1	1			i							
			₁ 1	1			j	i							
	1		, ,	1	<i>i</i>]			i							
	1 1		, 1	1	,		i	ı							
	-30		,]		,	.									
	1		,]	(,]			i							
1		.	,		,	.	.]								
		.]		,	,	.									
	t _	. [<i>i</i>											
	-35	.													
				.											
				,											
				.											

PROJEC [*]	Г : То	yota o	f Esc	ond	lido			Boring No. B-8 Project No. 014-12085							
DATE DRII	LED:							TYPE OF BORING:	FIO	ect No. 0	14-12	085			
		lune 1	9. 20)12					Soil/Ground	lwater					
DRILLING								ELEVATION & DATUM			Logo	GED BY:			
	Ge	oProb	e 662	20D	Т						ľ	M. Bowery			
SAMPLING					<u>*</u> .			DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:			
		Direc	t Pus	h											
Elevation Depth (Ft)	Odor	OID (bpmv)	Undisturbed Sample		Graphic Log	Soil Classification			SOIL DESCRIP	TION					
-						SC	71"	" concrete.	concrete.						
- 5	No	0					CI	" base. layey Sand (SC); dark bro							
-	NO					SW	Sa	and (SW); mottled brown	n/black very fine t	to coarse, dr	y.				
- 10	No	0				ML	Cli	layey Silt (ML); dark brov	vn, trace very fin	e sand, mois	st.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
-15	No	0				CL	Sil	lty Clay (CL); yellowish-brown, plastic, very moist.							
-20	No	0				SM		lty Sand (SM); light yello				caceous, wet.			
-25	No	0					Re	efusal at 24', bedrock (de	ecomposed granit BOTTOM OF BOI	e/silty clay). RING					
-30															
- 35 - - -															


PROJEC1	[: To	yota o	of Esc	cond	lido			Boring No. B-9 Project No. 014-12085				L- I		
DATE DRIL	LED:							TYPE OF BORING:	TYPE OF BORING:					
		June 1		012				Soil/Groundwater						
DRILLING E								ELEVATION & DATUM:			Logo	GED BY:		
		oProbe	e 662	20D	T						1	M. Bowery		
SAMPLING	MET	HOD:						DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:		
		Direct	t Pus	³h					ļ					
Elevation Depth (Ft)	Odor	(Amdd)	Undisturbed	Blow Count	Graphic Log	Soil			SOIL DESCRIPTION					
-						ML	1"	' concrete. ' base.						
-						'			and damp					
5	No	0						lt (ML); reddish-brown, h	sand, hard,	and, hard, damp.				
- 10	No	0				CL	Sil	Silty Clay (CL); yellowish-brown, slight plasticity, moist.						
- - - 15 - -	No	0					Sil1	Silty Clay (CL); mottled green/black, trace very fine sand, slight plasticity, moist.						
-				1										
-20	No	0				SW	Sar	nd (SW); brown, fine to o	coarse, micaceou BOTTOM OF BOI	us, wet. RING				
- 1			.		,]									
- 25 - - -														
-														
-30														
-														
- 35														

PROJECT	f: To	yota o	of Esc	cond	ido					ig No.	4 4 4 0 0	B-10	
DATE DRIL	LED:			—				Project No. 014-12085 TYPE OF BORING:					
		June 1	9, 20	012				Soil/Groundwater					
DRILLING E								ELEVATION & DATUM			LOGG	ED BY:	
		oProbe	e 662	20D	T				}				
SAMPLING	MET							DEPTH TO WATER:	FIRST:	COMPL.:		M. Bowery 24 HRS:	
		Direct											
Elevation Depth (Ft)	Odor	Old (ymdd)	Undisturbed Sample	Blow Count	Graphic Log	Soil		SOIL DESCRIPTION					
						ML	1"	' concrete. ' base					
-5 10	No No	0				CL	Cla	base. ayey Silt (ML); brown, to ayey Silt (ML); brown, to	race very fine sar	nd, dry.			
- - - 15 -		<i>y</i> *				CL	pla	lty Clay (CL); reddish-bro	BOTTOM OF BO		jht		
-20													
- 25 - - - 30 - -													
- 35 - - -													

PROJEC1	T: To	yota o	f Esc	ond	lido					ig No. ject No. 0	14-12	B-11		
DATE DRIL	LED:							TYPE OF BORING:						
		June 1)12				Soil/Groundwater						
DRILLING E	EQUIP	MENT	:					ELEVATION & DATUM: LOGGED BY:				GED BY:		
		oProbe	e 662	20D	Т			<u> </u>				M. Bowery		
SAMPLING	MET	HOD:						DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:		
		Direct	t Pus	h										
Elevation Depth (Ft)	Odor	(\nudd)	Undisturbed Sample	Blow Count	Graphic Log	Soil		SOIL DESCRIPTION						
-						ML	1"	' concrete. ' base.						
-						1		ayey Silt (ML); reddish-b	Prown trace very	fine sand d	l == ,			
-5 - - -	No No	0					Cla	ayey Silt (ML); reddish-b	prown, trace very	fine sand, d	lry.			
	No					CL	Sil	ty Clay (CL); yellowish-brown, trace very fine sand, micaceous,						
		'					mo	oi st.	воттом of во	RING				
									D0110m 0. 20	MINO				
							1							
- 15														
							ĺ							
	1 1						ĺ							
		1												
				,			1							
700		, ,		1	1		1							
-20					1	.								
		.		,			ĺ	10						
							ı							
	.					.	l							
_ 25					. [ı							
- 25							ı							
			i				ı							
		ļ			,									
<u></u>	.			1	.									
20			.											
-30			.											
			,											
		1												
			.											
-35						1								
					- 1							}		

PROJECT	· To	yota o	of Esc	cond	lido				Borin Proj e	g No. ect No. 0	14-120	B-12
DATE DRILL	ED:							TYPE OF BORING:				
	J	une 1	9, 20	012					Soil/Ground	water		
DRILLING E								ELEVATION & DATUM			LOGO	SED BY:
	Geo	Probe	e 662	20D	Т						1	M. Bowery
SAMPLING								DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:
		Direc	t Pue	h					1	OOWN L		24 11110.
		Direc			T 50	T =			1			
Elevation Depth (Ft)	Odor	PID (ppmv)	Undisturbed Sample	Blow Count	Graphic Log	Soil			SOIL DESCRIP	ΓΙΟΝ		
-						ML	1"	concrete.				
<u> </u>								base.				
							Cit	ayey Silt (ML); brown, to	race very fine san	d, micaceou	ıs, dan	np.
L I							1					
-5	No	0					Cla	ayey Silt (ML); brown, ti	race very fine san	d, micaceou	s, dan	np.
							ĺ		BOTTOM OF BO	RING		
- 1	İ				l ,]						
- 1												
- 10												
-]							
Į l												
- 15												
F {												
		İ										
<u> </u>												
-20												
_												
Į l												
						-						
	Ì	ĺ										
-25												
]	1						
	İ				İ							
- 1												
-	1					-						
-30		-										
					- 1							
		- 1										
												ļ
- 35												
-		ł										1
-					1							
-												ļ
												j

PROJECT	Γ: Το [,]	yota o	f Esc	ond	ido				Boring P roj e	g No. ect No. 0	14-12(B-13
DATE DRIL	LED:							TYPE OF BORING:	<u> </u>			
	J	lune 19	9, 20)12			1		Soil/Ground	water		
DRILLING E								ELEVATION & DATUM:			LOGO	GED BY:
	Ge	oProbe	e 662	20D°	Т		,					M. Bowery
SAMPLING	MET	HOD:						DEPTH TO WATER:	FIRST:	COMPL.:		24 HRS:
		Direct	t Pus	;h			,					
Elevation Depth (Ft)	Odor	PID (vmdd)	Undisturbed Sample	Blow Count	Graphic Log	Soil			SOIL DESCRIPT	ΓΙΟΝ		
- 5	No	0				ML	Cla	" asphalt. layey Silt (ML); brown, tr layey Silt (ML); brown, tr	race very fine san	ıd, micaceou		
			1						BOTTOM OF BOR	RING		
- 10 -												
- - 15 - -												
20 									×			
_ 25 												
- -30			!		!							
- -35 - -												
	i I		.		i	- 1						

06 July 2012

Mike Bowery Krazan, Clovis 215 West Dakota Avenue Clovis, CA 93612

RE: Toyota of Escondido

Saniel & Chivy

Enclosed are the results of analyses for samples received by the laboratory on 06/19/12 14:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez

Project Manager

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 Reported:
Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-2 @ 10'	T121054-07	Soil	06/18/12 10:20	06/19/12 14:55
B-3 @ 10'	T121054-11	Soil	06/18/12 11:16	06/19/12 14:55
B-4 @ 5'	T121054-14	Soil	06/18/12 12:38	06/19/12 14:55
B-5 @ 10'	T121054-20	Soil	06/18/12 13:42	06/19/12 14:55
B-6 @ 10'	T121054-25	Soil	06/18/12 14:36	06/19/12 14:55
B-7 @ 15'	T121054-31	Soil	06/18/12 15:58	06/19/12 14:55
B-8 @ 10'	T121054-35	Soil	06/19/12 08:13	06/19/12 14:55
B-9 @ 15'	T121054-40	Soil	06/19/12 09:35	06/19/12 14:55
B-10 @ 10'	T121054-43	Soil	06/19/12 10:51	06/19/12 14:55
B-11 @ 10'	T121054-45	Soil	06/19/12 11:06	06/19/12 14:55

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota AvenueProject Number: 014-12085Reported:Clovis CA, 93612Project Manager: Mike Bowery07/06/12 14:03

B-2 @ 10' T121054-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-2 @ 10' T121054-07 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	n n	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	n n	
n-Propylbenzene	ND	5.0	"	"	"	"	"	n n	
Styrene	ND	5.0	"	"	"	"	"	n n	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	n n	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	n n	
Tetrachloroethene	ND	5.0	"	"	"	"	"	n n	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	n n	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	n n	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	n n	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	n n	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	n n	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.0 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		89.9 %	95.7-	135	"	"	"	"	S-G

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-2 @ 10' T121054-07 (Soil)

Reporting

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Surrogate: Toluene-d8 95.1 % 85.5-116 2062823 06/28/12 07/05/12 EPA 8260B

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Method

Note

Krazan, Clovis Project: Toyota of Escondido

Result

ND

ND

ND

5.0

5.0

5.0

215 West Dakota Avenue Project Number: 014-12085 Reported:
Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-3 @ 10' T121054-11 (Soil)

Units

Dilution

Batch

Prepared

Analyzed

Reporting

Limit

	Sun	Star L	aboratorio	es, Inc.				
Metals by EPA 6010B								
Lead	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B
Volatile Organic Compounds by EPA Mo	ethod 8260B							
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
Bromochloromethane	ND	5.0	"	"	"	"	"	II .
Bromodichloromethane	ND	5.0	"	"	"	"	"	II .
Bromoform	ND	5.0	"	"	"	"	"	"
Bromomethane	ND	5.0	"	"	"	"	"	п
n-Butylbenzene	ND	5.0	"	"	"	"	"	п
sec-Butylbenzene	ND	5.0	"	"	"	"	"	п
ert-Butylbenzene	ND	5.0	"	"	"	"	"	п
Carbon tetrachloride	ND	5.0	"	"	"	"	"	п
Chlorobenzene	ND	5.0	"	"	"	"	"	"
Chloroethane	ND	5.0	"	"	"	"	"	"
Chloroform	ND	5.0	"	"	"	"	"	"
Chloromethane	ND	5.0	"	"	"	"	"	"
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"
Dibromochloromethane	ND	5.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	5.0	"		"	"	"	"
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"
Dibromomethane	ND	5.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"
,1-Dichloroethane	ND	5.0	"	"	"	"	"	"
,2-Dichloroethane	ND	5.0	"	"	"	"	"	"
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	II .
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	п

SunStar Laboratories, Inc.

trans-1,2-Dichloroethene

1,2-Dichloropropane 1,3-Dichloropropane

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-3 @ 10' T121054-11 (Soil)

Analyte Result Limit Units Dilution Batch Prepared		Report	ing						
, i	Analyte Re	sult Li	mit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2,2-Dichloropropane	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.9 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		94.9 %	95.7-	135	"	"	"	"	S-GO
Surrogate: Toluene-d8		96.8 %	85.5-	116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-3 @ 10' T121054-11 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-4 @ 5' T121054-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	borator	ries, Inc.					

Lead	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
Bromochloromethane	ND	5.0	"	"	"	"	"	"
Bromodichloromethane	ND	5.0	"	"	"	"	"	"
Bromoform	ND	5.0	"	"	"	"	"	"
Bromomethane	ND	5.0	"	"	"	"	"	"
n-Butylbenzene	ND	5.0	"	"	"	"	"	"
ec-Butylbenzene	ND	5.0	"	"	"	"	"	"
ert-Butylbenzene	ND	5.0	"	"	"	"	"	"
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"
Chlorobenzene	ND	5.0	"	"	"	"	"	"
Chloroethane	ND	5.0	"	"	"	"	"	"
Chloroform	ND	5.0	"	"	"	"	"	"
Chloromethane	ND	5.0	"	"	"	"	"	"
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"
l-Chlorotoluene	ND	5.0	"	"	"	"	"	"
Dibromochloromethane	ND	5.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"
Dibromomethane	ND	5.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"
,1-Dichloroethane	ND	5.0	"	"	"	"	"	"
,2-Dichloroethane	ND	5.0	"	"	"	"	"	"
,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-4 @ 5' T121054-14 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Suilstal Laboratories, inc.													
Volatile Organic Compounds by EPA Method 8260B													
2,2-Dichloropropane	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B					
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"					
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"					
Isopropylbenzene	ND	5.0	"	"	"	"	"	"					
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"					
Methylene chloride	ND	5.0	"	"	"	"	"	"					
Naphthalene	ND	5.0	"	"	"	"	"	"					
n-Propylbenzene	ND	5.0	"	"	"	"	"	"					
Styrene	ND	5.0	"	"	"	"	"	m .					
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"					
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	m .					
Tetrachloroethene	ND	5.0	"	"	"	"	"	m .					
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .					
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .					
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	m .					
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	m .					
Trichloroethene	ND	5.0	"	"	"	"	"	m .					
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	m .					
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	m .					
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	m .					
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
Vinyl chloride	ND	5.0	"	"	"	"	"	m .					
Benzene	ND	5.0	"	"	"	"	"	"					
Toluene	ND	5.0	"	"	"	"	"	"					
Ethylbenzene	ND	5.0	"	"	"	"	"	"					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		89.1 %	81.2-	123	"	"	"	"					
Surrogate: Dibromofluoromethane		97.1 %	95.7-	135	"	"	"	"					
Surrogate: Toluene-d8		95.2 %	85.5-	116	"	"	"	"					
V													

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-4 @ 5' T121054-14 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Method

Note

Krazan, Clovis Project: Toyota of Escondido

Result

ND

ND

ND

ND

ND

ND

ND

ND

ND

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

Reporting

Limit

B-5 @ 10' T121054-20 (Soil)

Units

SunStar Laboratories, Inc.

Dilution

Batch

Prepared

Analyzed

Metals by EPA 6010B								
Lead	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B
Volatile Organic Compounds by EPA M	ethod 8260B							
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
Bromochloromethane	ND	5.0	"	"	"	"	"	"
Bromodichloromethane	ND	5.0	"	"	"	"	"	"
Bromoform	ND	5.0	"	"	"	"	"	"
Bromomethane	ND	5.0	"	"	"	"	"	"
n-Butylbenzene	ND	5.0	"	"	"	"	"	"
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"
Chlorobenzene	ND	5.0	"	"	"	"	"	"
Chloroethane	ND	5.0	"	"	"	"	"	"
Chloroform	ND	5.0	"	"	"	"	"	"
Chloromethane	ND	5.0	"	"	"	"	"	"
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"
Dibromochloromethane	ND	5.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"
Dibromomethane	ND	5.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"

5.0 5.0

5.0

5.0

5.0 5.0

5.0

5.0

5.0

SunStar Laboratories, Inc.

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

trans-1,2-Dichloroethene

Dichlorodifluoromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saniel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-5 @ 10' T121054-20 (Soil)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2,2-Dichloropropane	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
ris-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"
Ethylbenzene	ND	5.0	"	"	"	"	"	"
n,p-Xylene	ND	5.0	"	"	"	"	"	"
o-Xylene	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		90.0 %	81.2-1	123	"	"	"	"
Surrogate: Dibromofluoromethane		99.8 %	95.7-1	135	"	"	"	"
Surrogate: Toluene-d8		100 %	85.5-1	16	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-5 @ 10' T121054-20 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-6 @ 10' T121054-25 (Soil)

	Reporti	ng						
Analyte Res	ılt Liı	nit Un	its Dilutio	n Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	11	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	m .	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	m .	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-6 @ 10' T121054-25 (Soil)

	Reporti	ng						
Analyte Res	ılt Liı	nit Un	its Dilutio	n Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2,2-Dichloropropane	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Γetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Γrichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Γoluene	ND	5.0	"	"	"	"	"	"
Ethylbenzene	ND	5.0	"	"	"	"	"	"
m,p-Xylene	ND	5.0	"	"	"	"	"	"
o-Xylene	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		89.1 %	81.2-	123	"	"	"	"
Surrogate: Dibromofluoromethane		101 %	95.7-	135	"	"	"	"
Surrogate: Toluene-d8		96.5 %	85.5-	116	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-6 @ 10' T121054-25 (Soil)

Reporting
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota AvenueProject Number: 014-12085Reported:Clovis CA, 93612Project Manager: Mike Bowery07/06/12 14:03

B-7 @ 15' T121054-31 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ries, Inc.					
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	36	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.7	2.0	"	"	"	"	"	"	
Cobalt	3.8	2.0	"	"	"	"	"	"	
Copper	2.2	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	3.0	"	"	"	"	"	"	
Nickel	ND	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	28	5.0	"	"	"	"	"	"	
Zinc	44	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7	7471								
Mercury	ND	0.10	mg/kg	1	2062812	06/28/12	06/29/12	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA	Method 8082								
PCB-1016	ND	10	ug/kg	1	2062819	06/28/12	07/02/12	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		46.8 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-7 @ 15' T121054-31 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B												
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B				
Bromochloromethane	ND	5.0	"	"	"	"	"	"				
Bromodichloromethane	ND	5.0	"	"	"	"	"	"				
Bromoform	ND	5.0	"	"	"	"	"	"				
Bromomethane	ND	5.0	"	"	"	"	"	"				
n-Butylbenzene	ND	5.0	"	"	"	"	"	"				
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"				
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"				
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"				
Chlorobenzene	ND	5.0	"	"	"	"	"	"				
Chloroethane	ND	5.0	"	"	"	"	"	"				
Chloroform	ND	5.0	"	"	"	"	"	"				
Chloromethane	ND	5.0	"	"	"	"	"	"				
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"				
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"				
Dibromochloromethane	ND	5.0	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"				
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"				
Dibromomethane	ND	5.0	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"				
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"				
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"				
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"				
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"				
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-7 @ 15' T121054-31 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

cis-1,3-Dichloropropene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		95.0 %	95.7-	135	"	"	"	"	S-GC
Surrogate: Toluene-d8		96.1 %	85.5-	116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota AvenueProject Number: 014-12085Reported:Clovis CA, 93612Project Manager: Mike Bowery07/06/12 14:03

B-8 @ 10' T121054-35 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	72	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.4	2.0	"	"	"	"	"	"	
Cobalt	6.5	2.0	"	"	"	"	"	"	
Copper	3.8	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	3.0	"	"	"	"	"	"	
Nickel	2.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	36	5.0	"	"	"	"	"	"	
Zinc	33	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	2062812	06/28/12	06/29/12	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Meth	od 8082								
PCB-1016	ND	10	ug/kg	1	2062819	06/28/12	07/02/12	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		57.4 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-8 @ 10' T121054-35 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E	CPA Method 8260B	,						
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
Bromochloromethane	ND	5.0	"	"	"	"	"	"
Bromodichloromethane	ND	5.0	"	"	"	"	"	"
Bromoform	ND	5.0	"	"	"	"	"	"
Bromomethane	ND	5.0	"	"	"	"	"	"
n-Butylbenzene	ND	5.0	"	"	"	"	"	"
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"
Chlorobenzene	ND	5.0	"	"	"	"	"	"
Chloroethane	ND	5.0	"	"	"	"	"	"
Chloroform	ND	5.0	"	"	"	"	"	"
Chloromethane	ND	5.0	"	"	"	"	"	"
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"
Dibromochloromethane	ND	5.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"
Dibromomethane	ND	5.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 Reported:
Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-8 @ 10' T121054-35 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
rans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Vaphthalene	ND	5.0	"	"	"	"	"	"
-Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"
thylbenzene	ND	5.0	"	"	"	"	"	"
n,p-Xylene	ND	5.0	"	"	"	"	"	"
-Xylene	ND	5.0	"	"	"	"	"	"
urrogate: 4-Bromofluorobenzene		92.6 %	81.2-	123	"	"	"	"
urrogate: Dibromofluoromethane		98.0 %	95.7-	135	"	"	"	"
urrogate: Toluene-d8		95.6 %	85.5-	116	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-9 @ 15' T121054-40 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	50	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.5	2.0	"	"	"	"	"	"	
Cobalt	3.2	2.0	"	"	"	"	"	"	
Copper	3.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	3.0	"	"	"	"	"	"	
Nickel	ND	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	50	5.0	"	"	"	"	"	"	
Zinc	28	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	2062812	06/28/12	06/29/12	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 Reported:
Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-10 @ 10' T121054-43 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	46	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	8.8	2.0	"	"	"	"	"	"	
Cobalt	4.8	2.0	"	"	"	"	"	"	
Copper	4.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	3.0	"	"	"	"	"	"	
Nickel	3.1	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	33	5.0	"	"	"	"	"	"	
Zinc	36	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 74	70/7471								
Mercury	ND	0.10	mg/kg	1	2062812	06/28/12	06/29/12	EPA 7471A Soil	
Volatile Organic Compounds by	y EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	,,	,,	,,	,,	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-10 @ 10' T121054-43 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	54	motal L	aboi atoi i	es, inc.					
Volatile Organic Compounds by I	EPA Method 8260B								
Chloromethane	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	II .	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-10 @ 10' T121054-43 (Soil)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
1,2,3-Trichlorobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.1 %	81.2-1	123	"	"	"	"	
Surrogate: Dibromofluoromethane		97.6 %	95.7-1	135	"	"	"	"	
Surrogate: Toluene-d8		97.0 %	85.5-1	116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-11 @ 10' T121054-45 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	2062818	06/28/12	07/02/12	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	63	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.8	2.0	"	"	"	"	"	"	
Cobalt	5.1	2.0	"	"	"	"	"	"	
Copper	6.3	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	3.0	"	"	"	"	"	"	
Nickel	3.2	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	25	5.0	"	"	"	"	"	"	
Zinc	31	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	2062812	06/28/12	06/29/12	EPA 7471A Soil	
Volatile Organic Compounds by EPA M	Iethod 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-11 @ 10' T121054-45 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Б	unoun D	uborutori	co, 111c.				
Volatile Organic Compounds by E	CPA Method 8260B							
Chloromethane	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"
Dibromochloromethane	ND	5.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"
Dibromomethane	ND	5.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	n .
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	n .
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	n .
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	n .
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	n .
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	n .
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	n .
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	n .
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	n .
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	n .
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	n .
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	n .
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	n .
Isopropylbenzene	ND	5.0	"	"	"	"	"	n .
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	n .
Methylene chloride	ND	5.0	"	"	"	"	"	n .
Naphthalene	ND	5.0	"	"	"	"	"	n .
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

B-11 @ 10' T121054-45 (Soil)

	F	eporting							
Analyte Re	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar La	aboratori	es, Inc.					
Volatile Organic Compounds by El	PA Method 8260	В							
1,2,3-Trichlorobenzene	ND	5.0	ug/kg	1	2062823	06/28/12	07/05/12	EPA 8260B	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.4 %	81.2-1	123	"	"	"	"	
Surrogate: Dibromofluoromethane		96.6 %	95.7-1	135	"	"	"	"	
Surrogate: Toluene-d8		96.4 %	85.5-1	116	"	"	"	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Krazan, Clovis Project: Toyota of Escondido

Result

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

$Metals\ by\ EPA\ 6010B\ -\ Quality\ Control$

SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Reporting

Limit

Blank (2062818-BLK1)				Prepared:	06/28/12	Analyze	d: 07/02/12	
Antimony	ND	3.0	mg/kg					
Silver	ND	2.0	"					
Arsenic	ND	5.0	"					
Barium	ND	1.0	"					
Beryllium	ND	1.0	"					
Cadmium	ND	2.0	"					
Chromium	ND	2.0	"					
Cobalt	ND	2.0	"					
Lead	ND	3.0	"					
Copper	ND	1.0	"					
Lead	ND	3.0	"					
Molybdenum	ND	3.0	"					
Nickel	ND	2.0	"					
Selenium	ND	5.0	"					
Thallium	ND	2.0	"					
Vanadium	ND	5.0	"					
Zinc	2.02	1.0	"					QB-01
LCS (2062818-BS1)				Prepared:	06/28/12	Analyze	d: 07/02/12	
Arsenic	101	5.0	mg/kg	100		101	75-125	
Barium	105	1.0	"	100		105	75-125	
Cadmium	101	2.0	"	100		101	75-125	
Chromium	105	2.0	"	100		105	75-125	
Lead	105	3.0	"	100		105	75-125	
Lead	105	3.0	"	100		105	75-125	
Matrix Spike (2062818-MS1)	Sour	Source: T121054-07		Prepared:	06/28/12	Analyze	d: 07/02/12	
Arsenic	71.7	5.0	mg/kg	100	ND	71.7	75-125	QM-05
Barium	127	1.0	"	100	61.1	65.8	75-125	QM-05
Cadmium	76.2	2.0	"	100	0.206	76.0	75-125	
Chromium	83.8	2.0	"	100	6.23	77.6	75-125	
Lead	77.7	3.0	"	100	2.70	75.0	75-125	
Lead	77.7	3.0	"	100	2.70	75.0	75-125	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saniel of Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2062818 - EPA 3051										
Matrix Spike Dup (2062818-MSD1)	Sou	rce: T12105	54-07	Prepared:	06/28/12	Analyzed	1: 07/02/12			
Arsenic	73.7	5.0	mg/kg	100	ND	73.7	75-125	2.82	20	QM-05
Barium	146	1.0	"	100	61.1	84.6	75-125	13.8	20	
Cadmium	81.8	2.0	"	100	0.206	81.6	75-125	7.12	20	
Chromium	90.4	2.0	"	100	6.23	84.2	75-125	7.60	20	
Lead	84.2	3.0	"	100	2.70	81.5	75-125	8.06	20	
Lead	84.2	3.0	"	100	2.70	81.5	75-125	8.06	20	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

Cold Vapor Extraction EPA 7470/7471 - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2062812 - EPA 7471A Soil										
Blank (2062812-BLK1)				Prepared:	06/28/12	Analyzed	1: 06/29/12			
Mercury	ND	0.10	mg/kg							
LCS (2062812-BS1)				Prepared:	06/28/12	Analyzed	1: 06/29/12			
Mercury	0.396	0.10	mg/kg	0.417		94.9	80-120			
Matrix Spike (2062812-MS1)	Sou	ırce: T12097	77-01	Prepared:	06/28/12	Analyzed	1: 06/29/12			
Mercury	0.377	0.10	mg/kg	0.417	ND	90.6	75-125			
Matrix Spike Dup (2062812-MSD1)	Sou	ırce: T12097	77-01	Prepared:	06/28/12	Analyzed	1: 06/29/12			
Mercury	0.371	0.10	mg/kg	0.417	ND	89.1	75-125	1.61	20	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2062819 - EPA 3550 ECD/G	GCMS									
Blank (2062819-BLK1)				Prepared:	06/28/12	Analyzed	1: 07/02/12			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	5.96		"	10.0		59.6	35-140			
LCS (2062819-BS1)				Prepared:	06/28/12	Analyzed	1: 07/02/12			
PCB-1016	61.6	10	ug/kg	100		61.6	40-130			
PCB-1260	48.8	10	"	100		48.8	40-130			
Surrogate: Tetrachloro-meta-xylene	7.56		"	10.0		75.6	35-140			
LCS Dup (2062819-BSD1)				Prepared:	06/28/12	Analyzed	1: 07/02/12			
PCB-1016	66.3	10	ug/kg	100		66.3	40-130	7.28	30	
PCB-1260	48.6	10	"	100		48.6	40-130	0.340	30	
Surrogate: Tetrachloro-meta-xylene	6.31		"	10.0		63.1	35-140			

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota AvenueProject Number: 014-12085Reported:Clovis CA, 93612Project Manager: Mike Bowery07/06/12 14:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
D 4 1 40/4044 FD4 5040 C/CM5		_								

Batch 2062823 - EPA 5030 GCM

Blank (2062823-BLK1)				Prepared: 06/28/12 Analyzed: 07/05/12
Bromobenzene	ND	5.0	ug/kg	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	

SunStar Laboratories, Inc.

RPD

%REC

Krazan, Clovis Project: Toyota of Escondido

38.5

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2062823 - EPA 5030 GCMS										
Blank (2062823-BLK1)				Prepared:	06/28/12	Analyzed	1: 07/05/12			
p-Isopropyltoluene	ND	5.0	ug/kg							
Methylene chloride	ND	5.0	"							
Naphthalene	ND	5.0	"							
n-Propylbenzene	ND	5.0	"							
Styrene	ND	5.0	"							
1,1,2,2-Tetrachloroethane	ND	5.0	"							
1,1,1,2-Tetrachloroethane	ND	5.0	"							
Tetrachloroethene	ND	5.0	"							
1,2,3-Trichlorobenzene	ND	5.0	"							
1,2,4-Trichlorobenzene	ND	5.0	"							
1,1,2-Trichloroethane	ND	5.0	"							
1,1,1-Trichloroethane	ND	5.0	"							
Trichloroethene	ND	5.0	"							
Trichlorofluoromethane	ND	5.0	"							
1,2,3-Trichloropropane	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
Benzene	ND	5.0	"							
Toluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
m,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
Tert-amyl methyl ether	ND	20	"							
Tert-butyl alcohol	ND	50	"							
Di-isopropyl ether	ND	20	"							
Ethyl tert-butyl ether	ND	20	"							
Methyl tert-butyl ether	ND	20	"							
Surrogate: 4-Bromofluorobenzene	34.4		"	40.0		86.0	81.2-123			
Surrogate: Dibromofluoromethane	32.8		"	40.0		81.9	95.7-135			S-G

40.0

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

85.5-116

96.2

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2062823 - EPA 5030 GCMS										
LCS (2062823-BS1)				Prepared:	06/28/12	Analyzed	1: 07/05/12			
Chlorobenzene	96.6	5.0	ug/kg	100		96.6	75-125			
1,1-Dichloroethene	98.5	5.0	"	100		98.5	75-125			
Trichloroethene	92.9	5.0	"	100		92.9	75-125			
Benzene	111	5.0	"	100		111	75-125			
Toluene	98.4	5.0	"	100		98.4	75-125			
Surrogate: 4-Bromofluorobenzene	38.5		"	40.0		96.2	81.2-123			
Surrogate: Dibromofluoromethane	44.8		"	40.0		112	95.7-135			
Surrogate: Toluene-d8	36.6		"	40.0		91.4	85.5-116			
Matrix Spike (2062823-MS1)	So	urce: T12111	7-03	Prepared:	06/28/12	Analyzed	1: 07/05/12			
Chlorobenzene	99.8	5.0	ug/kg	100	ND	99.8	75-125			
1,1-Dichloroethene	103	5.0	"	100	ND	103	75-125			
Trichloroethene	94.8	5.0	"	100	ND	94.8	75-125			
Benzene	122	5.0	"	100	ND	122	75-125			
Toluene	107	5.0	"	100	ND	107	75-125			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	81.2-123			
Surrogate: Dibromofluoromethane	53.4		"	40.0		133	95.7-135			
Surrogate: Toluene-d8	37.4		"	40.0		93.6	85.5-116			
Matrix Spike Dup (2062823-MSD1)	So	urce: T12111	7-03	Prepared:	06/28/12	Analyzed	d: 07/05/12			
Chlorobenzene	93.0	5.0	ug/kg	100	ND	93.0	75-125	7.00	20	
1,1-Dichloroethene	92.7	5.0	"	100	ND	92.7	75-125	10.6	20	
Trichloroethene	88.8	5.0	"	100	ND	88.8	75-125	6.43	20	
Benzene	109	5.0	"	100	ND	109	75-125	11.6	20	
Toluene	96.0	5.0	"	100	ND	96.0	75-125	10.6	20	
Surrogate: 4-Bromofluorobenzene	38.7		"	40.0		96.8	81.2-123			
Surrogate: Dibromofluoromethane	46.6		"	40.0		116	95.7-135			
Surrogate: Toluene-d8	38.0		"	40.0		95.1	85.5-116			

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 07/06/12 14:03

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

QB-01 The method blank contains analyte at a concentration above the MRL; however, concentration is less than 10% of the sample result,

which is negligible according to method criteria.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

|--|

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

												Pickup .	Pic		o client	Return to client	SCh 	Disposal @ \$2.00 each	Disposal	Sample disposal Instructions:	lisposal In	Sample o
	I				time:_	nd tiı	Turn around	urn á														
										ne	Date / Time	Date			Received by: (signature)	Received by	Э	Date / Time		Relinquished by: (signature)	shed by:	Relinqu
			/cold	dition	Received good condition/cold	good	eivec	Rec	L													
			ANN	t/ Y/	Seals intact? Y/N/NA	Seals	۲۵			ne	Date / Time	Date			Received by: (signature)	Received by	б	Date / Time	•	Relinquished by: (signature)	shed by:	Relinqu
			ANN	ls Y/N	Chain of Custody seals Y/N/NA	ustod	of C	hain			2//2	1	 	Res	1	A	155	7	16110	1	3	M
	Notes		iners	conta	Total # of containers	Total			<u> </u>	ne V)/Time	Date /	•	P	: (signature)	Received by:	. rō	Date / Time	_	Relinquished by: (signature)	shed by:	Relinqui
		30					<u> </u>	_							_		3-,54		_	Q	76	\$ -
		29				_	<u> </u>	ļ		<u> </u>	ļ	ļ					3150		_	~	0	12
		28					-	-	-	-	ļ	<u> </u>					8hi2			74'	0	6-6
	7	27				 	\vdash	-	 	-	<u> </u>						2:40			املا	0	2
		26				<u> </u>	\vdash	-	_	_	<u> </u>						2:38			\[\frac{1}{2} \]		20
		25				-	\vdash			<u> </u>		L					555		-	0 '		3-6
		24				-	\vdash	_	-	_						-	1/34			<u>-</u>	6	8-80
		23						_	-			_					21.5			72	7	2-5
		22				_		-	-	L							20.7	7		20	6 2	2-5
		2/				\vdash	\vdash	\vdash	-	L	L	L					K	_		٠ -	9	2/2
		8				-	-	-	<u> </u>	L	<u> </u>	L			_		1.11			() -	0	13-5
		10				-	\vdash	_	<u> </u>	-	L		L				1:30				503	RI
_	,	/8															7:02			124	0	8-4
		17				-	_	_	_								22		•	2	P	3-4
		16				-	\vdash	_							Robert	S6: 1	96:21	2118	6/1	15	240	8
Total # of containers	Comments/Preservative	Laboratory ID #				THE PROPERTY OF THE PROPERTY O	6010/7000 Title 22 Metals	8015M (diesel) 8015M Ext./Carbon Chain	8015M (gasoline)	8021 BTEX	8270	8260 BTEX, OXY only	8260 + OXY	8260	Container	Sample Type	Time	Date Sampled	Date	ō	Sample ID	
ı	EDF #:	Ē					84	7121054	li	h #:	Batch #:									ř	Project Manager:	Project
, ,	Client Project #: Q 4-1285	Clie								Collector:	Colle						Fax:					Phone:
1								- برا	Project Name	핝	Proje										S:	Address:
1	Page: C of 9	Pa			۲		3		6	ļ.	Date:)	797	A R		Client:
)					•																

Sample disposal Instructions: Disposal @ \$2.00 each Project Manager: Client: Relinquished by: (signature) Relinquished by: (signature) Address: inquisher by: (signature) Sample ID Date Sampled Ha Ha Date / Time Date / Time Date / Time 7 10.4 500 CI : 20 4:39 810 25.50 2/5 40. h Time 3 Received by: (signature) Received by: (signature) Received by: Sample Return to client Actat Container Type Clas 8260 8260 + OXY Pickup Date / Time Date / Time Date / Time 8260 BTEX, OXY only Batch #:_ Collector: Project Name: Date:_ 8270 8021 BTEX 8015M (gasoline) 7121054 Turn around time: Chain of Custody seals Y/N/NA 8015M (diesel) Received good condition/cold 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals Seals intact? Y/N/NA Total # of containers 24 42 11 40 38 37 35 EDF#: 2 22 37 3 Client Project #: Page: Laboratory ID# Comments/Preservative 58021-110 Notes Total # of containers

949-297-5020

SunStar Laboratories, Inc 25712 Commercentre Dr Lake Forest, CA 92630

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Dispu	Nelliquistied by: (algliacate)	Relinquished by: (signature)		Relinquished by: (signature)	11/2×2/1 61	Relinquished by: (signature)				3 1420 XX		ا ا	3-8	9 - 6	B-V	8-3	~ ン	8-1, 6	-13051	B-12051 C	Sample ID D.	Project Manager:	Phone:	Address:	Client: Kalar
Disposal @ \$2.00 each		Date / Time		Date / Time	19/12 255	Jate / lime	1			18/12/8/18/	-	10/57		121/21	18/12/4	18 12	5/12/11:38	19/12 10	6/19/12/13/1	119/12 1.31 19	Dațe Sampled Time		Fax:		3
Return to client	(Section by: (Signature)	Received hv. (signature)		Received by: (signature)		Received by: (signature)				Joy Wester							-	Wester VOA Physic	Soi Aceato	Acotate	Sample Container				
Pickup	Date / Tillio	Date / Time		Date / Time	e shelie	Date / Lime /%s	1														8260 8260 + OXY 8260 BTEX, OXY only 8270 8021 BTEX 8015M (gasoline)	Batch #:	Collector:_	Project Name:	Date: k
	Turn around time:	Tooched Bood condition cold	Received good condition/cold	Seals intact? Y/N/NA	Chain of Custody seals Y/N/NA	Total # of containers														-	8015M (diesel) 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals	T121054		ne:	6/19/12
			2	A	Α	Notes			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55	1:				6			48 2 401 805, 2 8260 1 may 16			Laboratory ID # Comments/Preservative Total # of containers	EDF #	Client Project #: 0/4-12085		Page: 4 Of 4

SAMPLE RECEIVING REVIEW SHEET

OTA OF	Eccondis	00	
ceived:_6/	19/12 19	∕ <i>∵5</i> S	
Other	<u></u>	<u>-</u>	
> 0°C (no <u>i</u>	f <u>rozen</u> con	tainers)	
cted temperatu	re	¥	
cted temperatu	ire		
cted temperatu	ire		
¥Yes	□No*	□N/A	
∐Yes	□No*	▼N/A	
¥Yes	□No*		
Yes	□No*		
¥Yes	□No*		
✓Yes	□No*	•	
⊻Yes	□No*	□N/A	
ontainers, l	abels, volu	mes	
keview - Initi	als and date	BC 6/1	9/12
		-	
	Ceived:	Ceived: 6/19/12 /9 Other	cted temperature LYes No* N/A Yes No* N/A Yes No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No* Yes No*

27 June 2012

Mike Bowery Krazan, Clovis 215 West Dakota Avenue Clovis, CA 93612

RE: Toyota of Escondido

Saniel & Chivy

Enclosed are the results of analyses for samples received by the laboratory on 06/19/12 14:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez

Project Manager

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-1 @ 5'	T121054-01	Soil	06/18/12 09:20	06/19/12 14:55
B-1 @ 15'	T121054-03	Soil	06/18/12 09:26	06/19/12 14:55
B-1 @ 20'	T121054-04	Soil	06/18/12 09:30	06/19/12 14:55
B-1 @ 24'	T121054-05	Soil	06/18/12 09:40	06/19/12 14:55
B-2 @ 5'	T121054-06	Soil	06/18/12 10:18	06/19/12 14:55
B-2 @ 10'	T121054-07	Soil	06/18/12 10:20	06/19/12 14:55
B-3 @ 5'	T121054-10	Soil	06/18/12 11:06	06/19/12 14:55
B-3 @ 10'	T121054-11	Soil	06/18/12 11:16	06/19/12 14:55
B-4 @ 5'	T121054-14	Soil	06/18/12 12:38	06/19/12 14:55
B-4 @ 10'	T121054-15	Soil	06/18/12 12:43	06/19/12 14:55
B-5 @ 10'	T121054-20	Soil	06/18/12 13:42	06/19/12 14:55
B-5 @ 15'	T121054-21	Soil	06/18/12 13:58	06/19/12 14:55
B-6 @ 10'	T121054-25	Soil	06/18/12 14:36	06/19/12 14:55
B-6 @ 15'	T121054-26	Soil	06/18/12 14:38	06/19/12 14:55
B-7 @ 10'	T121054-30	Soil	06/18/12 15:54	06/19/12 14:55
B-7 @ 15'	T121054-31	Soil	06/18/12 15:58	06/19/12 14:55
B-7 @ 20'	T121054-32	Soil	06/18/12 16:03	06/19/12 14:55
B-8 @ 10'	T121054-35	Soil	06/19/12 08:13	06/19/12 14:55
B-8 @ 15'	T121054-36	Soil	06/19/12 08:15	06/19/12 14:55
B-9 @ 15'	T121054-40	Soil	06/19/12 09:35	06/19/12 14:55
B-9 @ 20'	T121054-41	Soil	06/19/12 09:38	06/19/12 14:55
B-10 @ 5'	T121054-42	Soil	06/19/12 09:38	06/19/12 14:55
B-10 @ 10'	T121054-43	Soil	06/19/12 10:51	06/19/12 14:55
B-11 @ 5'	T121054-44	Soil	06/19/12 11:05	06/19/12 14:55
B-11 @ 10'	T121054-45	Soil	06/19/12 11:06	06/19/12 14:55
B-12 @ 5'	T121054-46	Soil	06/19/12 13:31	06/19/12 14:55

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-13 @ 5'	T121054-47	Soil	06/19/12 13:43	06/19/12 14:55
B-1	T121054-48	Water	06/19/12 10:30	06/19/12 14:55
B-2	T121054-49	Water	06/18/12 11:35	06/19/12 14:55
B-3	T121054-50	Water	06/18/12 11:55	06/19/12 14:55
B-4	T121054-51	Water	06/18/12 16:36	06/19/12 14:55
B-5	T121054-52	Water	06/18/12 15:31	06/19/12 14:55
B-8	T121054-53	Water	06/19/12 11:15	06/19/12 14:55
B-9	T121054-54	Water	06/19/12 10:15	06/19/12 14:55

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota AvenueProject Number: 014-12085Reported:Clovis CA, 93612Project Manager: Mike Bowery06/27/12 16:09

B-1 @ 5' T121054-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
SunStar Laboratories, Inc.														
Extractable Petroleum Hydro	carbons by 8015C													
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C						
C13-C28 (DRO)	24	10	"	"	"	"	"	"	D-03					
C29-C40 (MORO)	ND	10	"	"	"	"	"	"						
Surrogate: p-Terphenyl		77.7 %	65-13	35	"	"	"	"						

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 @ 15' T121054-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-		SunStar L					<u> </u>		
		Suiistai L	adorator	ies, inc.					
Extractable Petroleum Hydrocarl									
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	25	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"		"		"	"	
Surrogate: p-Terphenyl		79.5 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	2062024	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by I	EPA Method 8260	0B							
Bromobenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1.1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 @ 15' T121054-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.													
Volatile Organic Compounds by EPA Method 8260B													
1,2-Dichloroethane	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	_				
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	11					
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"					
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"					
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"					
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"					
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"					
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"					
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"					
Isopropylbenzene	ND	5.0	"	"	"	"	"	"					
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"					
Methylene chloride	ND	5.0	"	"	"	"	"	"					
Naphthalene	ND	5.0	"	"	"	"	"	"					
n-Propylbenzene	ND	5.0	"	"	"	"	"	"					
Styrene	ND	5.0	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"					
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"					
Tetrachloroethene	ND	5.0	"	"	"	"	"	"					
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"					
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"					
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"					
Trichloroethene	ND	5.0	"	"	"	"	"	"					
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"					
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
Vinyl chloride	ND	5.0	"	"	"	"	"	"					
Benzene	ND	5.0	"	"	"	"	"	"					
Toluene	ND	5.0	"	"	"	"	"	"					

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 @ 15' T121054-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compour	de hy	FPA	Method 8260B	
v oracii e	Organic	Compour	เนรายง	121 A	MICHIOU 0200D	

Ethylbenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	95.7-	135	"	"	"	"	
Surrogate: Toluene-d8		97.9 %	85.5-	116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 @ 20' T121054-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		87.6 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	2062024	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by El	PA Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 @ 20' T121054-04 (Soil)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.													
Volatile Organic Compounds by EPA Method 8260B													
1,2-Dichloroethane	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B					
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"					
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"					
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"					
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"					
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"					
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"					
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"					
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"					
Isopropylbenzene	ND	5.0	"	"	"	"	"	"					
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"					
Methylene chloride	ND	5.0	"	"	"	"	"	"					
Naphthalene	ND	5.0	"	"	"	"	"	"					
n-Propylbenzene	ND	5.0	"	"	"	"	"	"					
Styrene	ND	5.0	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"					
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"					
Tetrachloroethene	ND	5.0	"	"	"	"	"	"					
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"					
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"					
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"					
Trichloroethene	ND	5.0	"	"	"	"	"	"					
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"					
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
Vinyl chloride	ND	5.0	"	"	"	"	"	"					
Benzene	ND	5.0	"	"	"	"	"	"					
Toluene	ND	5.0	"	"	"	"	"	"					

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 @ 20' T121054-04 (Soil)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compour	de hy	FPA	Method 8260B	
v oracii e	Organic	Compour	เนรายง	121 A	MICHIOU 0200D	

Ethylbenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	95.7-	135	"	"	"	"	
Surrogate: Toluene-d8		93.6 %	85.5-	116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 @ 24' T121054-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorie	es, Inc.					
Extractable Petroleum Hydrocarbon	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		79.6 %	65-13	5	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-2 @ 5' T121054-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	20	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		81.1 %	65-1	35	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-2 @ 10' T121054-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	25	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		79.3 %	65-	135	"	"	"	"	_

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-3 @ 5' T121054-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	24	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		85.6 %	65-1	35	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-3 @ 10' T121054-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	26	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		71.4 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-4 @ 5' T121054-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	31	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		88.2 %	65-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-4 @ 10' T121054-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratorie	es, Inc.					
Extractable Petroleum Hydrocar	rbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		81.4 %	65-13	35	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-5 @ 10' T121054-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydrocar	bons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	35	10	"	"	"	"	"	"	D-0
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		76.4 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-5 @ 15' T121054-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	30	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		70.4 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-6 @ 10' T121054-25 (Soil)

			•	,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydroca	arbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	28	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		71.3 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-6 @ 15' T121054-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratorie	es, Inc.					
Extractable Petroleum Hydroc	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		79.8 %	65-13	?5	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-7 @ 10' T121054-30 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	23	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		80.4 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-7 @ 15' T121054-31 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	25	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		77.9 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, ClovisProject: Toyota of Escondido215 West Dakota AvenueProject Number: 014-12085Reported:Clovis CA, 93612Project Manager: Mike Bowery06/27/12 16:09

B-7 @ 20' T121054-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		78.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	2062024	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by El	PA Method 826	60B							
Bromobenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-7 @ 20' T121054-32 (Soil)

	Rep	orting							
Analyte Resi	ılt	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260E
,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Iexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Taphthalene	ND	5.0	"	"	"	"	"	"
-Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
enzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-7 @ 20' T121054-32 (Soil)

ı										
			Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organi	c Compound	c by FPA	Method 8260R
voiaule Organi	e Combouna	SUVELFA	Michiga ozobb

Ethylbenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	95.7-	135	"	"	"	"	
Surrogate: Toluene-d8		95.5 %	85.5-	116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-8 @ 10' T121054-35 (Soil)

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	SunStar L	aborator	ies, Inc.					
bons by 8015C								
ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
25	10	"	"	"	"	"	"	D-03
ND	10	"	"	"	"	"	"	
	79.3 %	65-	135	"	"	"	"	
!	bons by 8015C ND 25	Result Limit SunStar L SunStar L bons by 8015C ND ND 10 25 10 ND 10	Result Limit Units	Result Limit Units Dilution	Result Limit Units Dilution Batch	Result Limit Units Dilution Batch Prepared	Result Limit Units Dilution Batch Prepared Analyzed	Result Limit Units Dilution Batch Prepared Analyzed Method

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-8 @ 15' T121054-36 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	24	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		81.3 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 @ 15' T121054-40 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062026	06/20/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	25	10	"	"	"	"	"	"	D-03
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		81.1 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 @ 15' T121054-40 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,2-Dichloroethene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260E
ans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
2-Dichloropropane	ND	5.0	"	"	"	"	"	"
3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1-Dichloropropene	ND	5.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
exachlorobutadiene	ND	5.0	"	"	"	"	"	"
opropylbenzene	ND	5.0	"	"	"	"	"	"
Isopropyltoluene	ND	5.0	"	"	"	"	"	"
lethylene chloride	ND	5.0	"	"	"	"	"	"
aphthalene	ND	5.0	"	"	"	"	"	"
Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
enzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"
thylbenzene	ND	5.0	"	"	"	"	"	"
,p-Xylene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 @ 15' T121054-40 (Soil)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

o-Xylene	ND	5.0	ug/kg 1	2062025	06/20/12	06/24/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		111 %	81.2-123	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	95.7-135	"	"	"	"	
Surrogate: Toluene-d8		95.0 %	85.5-116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 @ 20' T121054-41 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062106	06/21/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		70.0 %	65-	135	"	"	"	"	
Volatile Organic Compounds by F	EPA Method 8260	B							
Bromobenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 @ 20' T121054-41 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,2-Dichloroethene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260E
ans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
2-Dichloropropane	ND	5.0	"	"	"	"	"	"
3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1-Dichloropropene	ND	5.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
exachlorobutadiene	ND	5.0	"	"	"	"	"	"
opropylbenzene	ND	5.0	"	"	"	"	"	"
Isopropyltoluene	ND	5.0	"	"	"	"	"	"
lethylene chloride	ND	5.0	"	"	"	"	"	"
aphthalene	ND	5.0	"	"	"	"	"	"
Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
enzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"
thylbenzene	ND	5.0	"	"	"	"	"	"
,p-Xylene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 @ 20' T121054-41 (Soil)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

o-Xylene	ND	5.0	ug/kg 1	2062025	06/20/12	06/24/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		115 %	81.2-123	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	95.7-135	"	"	"	"	
Surrogate: Toluene-d8		88.9 %	85.5-116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-10 @ 5' T121054-42 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062123	06/21/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		83.7 %	65-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-10 @ 10' T121054-43 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratorio	es, Inc.					
Extractable Petroleum Hydro	carbons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062106	06/21/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	m .	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		67.9 %	65-13	35	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-11 @ 5' T121054-44 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062123	06/21/12	06/21/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		87.7 %	65-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-11 @ 10' T121054-45 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorie	s, Inc.					
Extractable Petroleum Hydrocarbon	ns by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062106	06/21/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	n .	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		67.7 %	65-13	25	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-12 @ 5' T121054-46 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydrocarb	ons by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062106	06/21/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	2062024	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by E	PA Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-12 @ 5' T121054-46 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	SunStar Laboratories, Inc.											
Volatile Organic Compounds by EPA	A Method 8260B											
1,2-Dichloroethane	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	_			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	11				
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	11				
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"				
Isopropylbenzene	ND	5.0	"	"	"	"	"	"				
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"				
Methylene chloride	ND	5.0	"	"	"	"	"	"				
Naphthalene	ND	5.0	"	"	"	"	"	"				
n-Propylbenzene	ND	5.0	"	"	"	"	"	"				
Styrene	ND	5.0	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"				
Tetrachloroethene	ND	5.0	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"				
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"				
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"				
Trichloroethene	ND	5.0	"	"	"	"	"	"				
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
Vinyl chloride	ND	5.0	"	"	"	"	"	"				
Benzene	ND	5.0	"	"	"	"	"	"				
Toluene	ND	5.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-12 @ 5' T121054-46 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compour	de hy	FPA	Method 8260B	
v oracii e	Organic	Compour	us nv	121 /4	MICHIOU 0200D	

Ethylbenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	95.7-	135	"	"	"	"	
Surrogate: Toluene-d8		95.5 %	85.5-	116	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido
215 West Dakota Avenue Project Number: 014-12085 Reported:
Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-13 @ 5' T121054-47 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ries, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	2062106	06/21/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		79.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	2062024	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by EPA	Method 826	60B							
Bromobenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-13 @ 5' T121054-47 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	D	unotai D	uborutori	cs, mc.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	n .
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	n .
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	n .
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	n .
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	n .
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	n .
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	n .
Vinyl chloride	ND	5.0	"	"	"	"	"	n .
Benzene	ND	5.0	"	"	"	"	"	n .
Toluene	ND	5.0	"	"	"	"	"	n .

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-13 @ 5' T121054-47 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compound	c by FP	A Method	8260B
v oratne	Organic	Compound	SUVEE	A Memou	i o∠uud

Ethylbenzene	ND	5.0	ug/kg	1	2062025	06/20/12	06/24/12	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	95.7-	135	"	"	"	"	
Surrogate: Toluene-d8		96.2 %	85.5-	116	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 T121054-48 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	ahoratoi	ies Inc					
	1 00150	Sunstai La	aboi atoi	ics, inc.					
Extractable Petroleum Hydrocarl		0.50	/1	1	20/2022	06/00/10	06/02/12	EDA 0015C	
C6-C12 (GRO) C13-C28 (DRO)	5.1 1.2	0.50 0.50	mg/l	1 "	2062022	06/20/12	06/22/12	EPA 8015C	
C29-C40 (MORO)	ND	0.50	"	"	,,	,,	,,	"	
Surrogate: p-Terphenyl	ND	73.3 %	65-	135	"	"	"	"	
		70.0 70	32	100					
Metals by EPA 6010B Lead	ND	50	ug/l	1	2062023	06/20/12	06/21/12	EPA 6010B	
Lead	ND	30	ug/1	1	2002023	00/20/12	00/21/12	EFA 0010B	
Volatile Organic Compounds by I	EPA Method 826								
Bromobenzene	ND	1.0	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	2.1	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	n .	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1.1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Method

Notes

Krazan, Clovis Project: Toyota of Escondido

Result

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Reporting

Limit

B-1 T121054-48 (Water)

Units

Dilution

Batch

Prepared

Analyzed

SunStar Laboratories, Inc.									
Volatile Organic Compounds by EPA Meth	od 8260B								
1,2-Dichloroethane	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	n .	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	n .	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	n .	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	u .	
Trichloroethene	ND	1.0	"	"	"	"	"	u .	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	

1.0

1.0

1.0

1.0

0.50

0.50

ND

ND

ND

ND

ND

ND

SunStar Laboratories, Inc.

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Vinyl chloride

Benzene

Toluene

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-1 T121054-48 (Water)

	Reporti	ng						
Analyte Res	ılt Liı	nit Un	its Dilutio	n Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compour	de hy	FPA	Method 8260B	
v oracii e	Organic	Compour	us nv	121 /4	MICHIOU 0200D	

, 01000110 01 A 001110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
Ethylbenzene	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		129 %	83.5-	119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		104 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		99.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-2 T121054-49 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015C								
C6-C12 (GRO)	ND	0.50	mg/l	1	2062022	06/20/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	0.50	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		75.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	50	ug/l	1	2062023	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by El	PA Method 8260	0B							
Bromobenzene	ND	1.0	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-2 T121054-49 (Water)

	Re	eporting							
Analyte Resi	ılt	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

a a					-
SunStar	• 1 /	abor	atori	es.	nc.

,2-Dichloroethane	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260E
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Iaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-2 T121054-49 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Ethylbenzene	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.4 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		97.6 %	88.8	117	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-3 T121054-50 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015C								
C6-C12 (GRO)	ND	0.50	mg/l	1	2062022	06/20/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	0.50	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	50	ug/l	1	2062023	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by I	EPA Method 8260)B							
Bromobenzene	ND	1.0	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Method

Notes

Krazan, Clovis Project: Toyota of Escondido

Result

ND

ND

ND

ND

ND

ND

ND

ND

215 West Dakota Avenue Project Number: 014-12085 Reported:
Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Reporting

Limit

B-3 T121054-50 (Water)

Units

SunStar Laboratories, Inc.

Dilution

Batch

Prepared

Analyzed

1,2-Dichloroethane	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"

1.0

1.0

1.0

1.0

1.0

1.0

0.50

0.50

SunStar Laboratories, Inc.

Trichloroethene Trichlorofluoromethane

Vinyl chloride

Benzene

Toluene

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-3 T121054-50 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hv EPA	Method 8260B
v olatlic	Organic	Compounds) U	MICHIOU OZOOD

Ethylbenzene	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.2 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		96.4 %	88.8	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-4 T121054-51 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015C								
C6-C12 (GRO)	ND	0.50	mg/l	1	2062022	06/20/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	0.50	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		68.2 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	50	ug/l	1	2062023	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by El	PA Method 8260)B							
Bromobenzene	ND	1.0	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-4 T121054-51 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	b	unstai La	เมษา สเษา	es, mc.					
Volatile Organic Compounds by	EPA Method 8260B	}							
1,2-Dichloroethane	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	II .	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-4 T121054-51 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compour	de hy	FPA	Method 8260B	
v oracii e	Organic	Compour	us nv	121 /4	MICHIOU 0200D	

Ethylbenzene	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.5 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		97.0 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-5 T121054-52 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015C								
C6-C12 (GRO)	ND	0.50	mg/l	1	2062022	06/20/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	0.50	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		75.3 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	50	ug/l	1	2062023	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by I	EPA Method 8260)B							
Bromobenzene	ND	1.0	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Method

Note

Krazan, Clovis Project: Toyota of Escondido

Result

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Reporting

Limit

B-5 T121054-52 (Water)

Units

Dilution

Batch

Prepared

Analyzed

	5	SunStar La	aboratori	es, Inc.				
Volatile Organic Compounds by	EPA Method 8260H	3						
1,2-Dichloroethane	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
_								

0.50

0.50

ND

ND

SunStar Laboratories, Inc.

Benzene

Toluene

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-5 T121054-52 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hy FPA	Method 8260B
voiauie	Organic	Compounds	DVEFA	Michiga 9700D

Ethylbenzene	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.5 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	81-1	136	"	"	"	"	
Surrogate: Toluene-d8		95.8 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-8 T121054-53 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
·		SunStar La	ahorator	ries Inc		-	<u>-</u>		
F-4 4-11- D-41 II1I	h 0015C	Sunstai La	aboi atoi	ics, inc.					
Extractable Petroleum Hydrocart C6-C12 (GRO)	ND	0.50	m a /1	1	20/2022	06/20/12	06/22/12	EDA 9015C	
	ND ND	0.50	mg/l	1	2062022	06/20/12	06/22/12	EPA 8015C	
C13-C28 (DRO) C29-C40 (MORO)	ND ND	0.50	"	,,	,,	,,	,,	"	
Surrogate: p-Terphenyl	ND	74.3 %	65-	135	"	"	"	n n	
Metals by EPA 6010B									
Lead	ND	50	ug/l	1	2062023	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by I	EPA Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-8 T121054-53 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	b	unstai La	เมษา สเษา	es, mc.					
Volatile Organic Compounds by	EPA Method 8260B	}							
1,2-Dichloroethane	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	II .	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-8 T121054-53 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hy FPA	Method 8260B
voiauie	Organic	Compounds	DVEFA	Michiga 9700D

Ethylbenzene	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.9 %	83.5	119	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	81	136	"	"	"	"	
Surrogate: Toluene-d8		97.8 %	88.8	117	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 T121054-54 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015C								
C6-C12 (GRO)	ND	0.50	mg/l	1	2062022	06/20/12	06/22/12	EPA 8015C	
C13-C28 (DRO)	ND	0.50	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		72.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	50	ug/l	1	2062023	06/20/12	06/21/12	EPA 6010B	
Volatile Organic Compounds by E	PA Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 T121054-54 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260E
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Iaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

B-9 T121054-54 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hy FPA	Method 8260B
voiauie	Organic	Compounds	DVEFA	Michiga 0700D

Ethylbenzene	ND	0.50	ug/l	1	2062105	06/21/12	06/26/12	EPA 8260B
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	n .
Surrogate: 4-Bromofluorobenzene		98.5 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		97.4 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		97.8 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Extractable Petroleum Hydrocarbons by 8015C - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2062022 - EPA 3510C GC										
Blank (2062022-BLK1)				Prepared:	06/20/12	Analyzed	d: 06/22/12			
C6-C12 (GRO)	ND	0.50	mg/l							
C13-C28 (DRO)	ND	0.50	"							
C29-C40 (MORO)	ND	0.50	"							
Surrogate: p-Terphenyl	2.90		"	4.00		72.4	65-135			
LCS (2062022-BS1)				Prepared:	06/20/12	Analyzed	d: 06/22/12			
C13-C28 (DRO)	16.1	0.50	mg/l	20.0		80.6	75-125			
Surrogate: p-Terphenyl	3.03		"	4.00		75.9	65-135			
Matrix Spike (2062022-MS1)	So	urce: T12100	67-01	Prepared:						
C13-C28 (DRO)	16.3	0.50	mg/l	20.0	ND	81.4	75-125			
Surrogate: p-Terphenyl	3.02		"	4.00		75.4	65-135			
Matrix Spike Dup (2062022-MSD1)	So	urce: T12100	67-01	Prepared:	06/20/12	Analyzed	d: 06/22/12			
C13-C28 (DRO)	17.0	0.50	mg/l	20.0	ND	85.2	75-125	4.54	20	
Surrogate: p-Terphenyl	3.00		"	4.00		75.0	65-135			
Batch 2062026 - EPA 3550B GC										
Blank (2062026-BLK1)				Prepared:	06/20/12	Analyzed	d: 06/21/12			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	73.6		"	100		73.6	65-135			
LCS (2062026-BS1)				Prepared:	06/20/12	Analyzed	d: 06/21/12			
C13-C28 (DRO)	410	10	mg/kg	500		81.6	75-125			
Surrogate: p-Terphenyl	73.0		"	100		73.0	65-135			

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Extractable Petroleum Hydrocarbons by 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2062026 - EPA 3550B GC										
Matrix Spike (2062026-MS1)	Sour	ce: T12105	54-01	Prepared	: 06/20/12					
C13-C28 (DRO)	410	10	mg/kg	500	24	76.4	75-125			
Surrogate: p-Terphenyl	71.5		"	100		71.5	65-135			
Matrix Spike Dup (2062026-MSD1)	Sour	Source: T121054-01			: 06/20/12	Analyzed	1: 06/21/12			
C13-C28 (DRO)	470	10	mg/kg	500	24	88.4	75-125	13.7	20	
Surrogate: p-Terphenyl	83.4		"	100		83.4	65-135			
Batch 2062106 - EPA 3550B GC										
Blank (2062106-BLK1)				Prepared	: 06/21/12	Analyzed	1: 06/22/12			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	68.5		"	100		68.5	65-135			
LCS (2062106-BS1)				Prepared	: 06/21/12	Analyzed	1: 06/22/12			
C13-C28 (DRO)	410	10	mg/kg	500		81.5	75-125			
Surrogate: p-Terphenyl	67.2		"	100		67.2	65-135			
Matrix Spike (2062106-MS1)	Sour	ce: T12105	54-41	Prepared	: 06/21/12	Analyzed	d: 06/22/12			
C13-C28 (DRO)	420	10	mg/kg	500	ND	84.6	75-125			
Surrogate: p-Terphenyl	73.3		"	100		73.3	65-135			
Matrix Spike Dup (2062106-MSD1)	Sour	ce: T12105	54-41	Prepared	: 06/21/12	Analyzed	1: 06/22/12			
C13-C28 (DRO)	440	10	mg/kg	500	ND	88.1	75-125	4.02	20	
Surrogate: p-Terphenyl	76.8		"	100		76.8	65-135			

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Extractable Petroleum Hydrocarbons by 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2062123 - EPA 3550B GC										
Blank (2062123-BLK1)				Prepared	& Analyz	ed: 06/21/	12			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	83.7		"	100		83.7	65-135			
LCS (2062123-BS1)				Prepared	& Analyz	ed: 06/21/	12			
C13-C28 (DRO)	410	10	mg/kg	500		82.6	75-125			
Surrogate: p-Terphenyl	71.8		"	100		71.8	65-135			
Matrix Spike (2062123-MS1)	So	urce: T12106	69-03	Prepared	& Analyz	ed: 06/21/	12			
C13-C28 (DRO)	470	10	mg/kg	500	ND	94.5	75-125			
Surrogate: p-Terphenyl	83.9		"	100		83.9	65-135			
Matrix Spike Dup (2062123-MSD1)	So	urce: T12106	69-03	Prepared & Analyzed: 06/21/12						
C13-C28 (DRO)	460	10	mg/kg	500	ND	91.2	75-125	3.54	20	
Surrogate: p-Terphenyl	81.0		"	100		81.0	65-135			

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Metals by EPA 6010B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2062023 - EPA 3010A										
Blank (2062023-BLK1)				Prepared:	: 06/20/12	Analyzed	1: 06/21/12		_	_
Lead	ND	50	ug/l							
LCS (2062023-BS1)				Prepared:	: 06/20/12	Analyzed	1: 06/21/12			
Lead	511	50	ug/l	500		102	75-125			
Matrix Spike (2062023-MS1)	Sour	rce: T12105	54-54	Prepared:	06/20/12	Analyzed	1: 06/21/12			
Lead	460	50	ug/l	500	ND	91.9	75-125			
Matrix Spike Dup (2062023-MSD1)	Sour	Prepared:	06/20/12	Analyzed	1: 06/21/12					
Lead	449	50	ug/l	500	ND	89.8	75-125	2.30	20	
Batch 2062024 - EPA 3051										
Blank (2062024-BLK1)				Prepared:	: 06/20/12	Analyzed	1: 06/21/12			
Lead	ND	3.0	mg/kg							
LCS (2062024-BS1)				Prepared:	: 06/20/12	Analyzed	1: 06/21/12			
Lead	110	3.0	mg/kg	100		110	75-125			
Matrix Spike (2062024-MS1)	Sour	Source: T121054-47				Analyzed	1: 06/21/12			
Lead	92.7	3.0	mg/kg	100	0.654	92.1	75-125			
Matrix Spike Dup (2062024-MSD1)	Sour	rce: T12105	4-47	Prepared:	: 06/20/12	Analyzed	1: 06/21/12			
Lead	87.3	3.0	mg/kg	100	0.654	86.7	75-125	5.97	20	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Krazan, Clovis Project: Toyota of Escondido

Result

ND

ND

ND

5.0

5.0

5.0

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2062025-BLK1)				Prepared: 06/20/12 Analyzed: 06/23/12
Bromobenzene	ND	5.0	ug/kg	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
ert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
2-Dibromo-3-chloropropane	ND	5.0	"	
2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
,2-Dichlorobenzene	ND	5.0	"	
,3-Dichlorobenzene	ND	5.0	"	
,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1-Dichloroethane	ND	5.0	"	
2-Dichloroethane	ND	5.0	"	
,1-Dichloroethene	ND	5.0	"	
is-1,2-Dichloroethene	ND	5.0	"	
nns-1,2-Dichloroethene	ND	5.0	"	
,2-Dichloropropane	ND	5.0	"	
,3-Dichloropropane	ND	5.0	"	
,2-Dichloropropane	ND	5.0	"	
,1-Dichloropropene	ND	5.0	"	
s-1,3-Dichloropropene	ND	5.0	"	

SunStar Laboratories, Inc.

trans-1,3-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saniel of Chivy

RPD

%REC

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	%KEC Limits	RPD	Limit	Notes
Batch 2062025 - EPA 5030 GCMS										
Blank (2062025-BLK1)				Prepared:	: 06/20/12	Analyzed	1: 06/23/12			
p-Isopropyltoluene	ND	5.0	ug/kg							
Methylene chloride	ND	5.0	"							
Naphthalene	ND	5.0	"							
n-Propylbenzene	ND	5.0	"							
Styrene	ND	5.0	"							
1,1,2,2-Tetrachloroethane	ND	5.0	"							
1,1,1,2-Tetrachloroethane	ND	5.0	"							
Tetrachloroethene	ND	5.0	"							
1,2,3-Trichlorobenzene	ND	5.0	"							
1,2,4-Trichlorobenzene	ND	5.0	"							
1,1,2-Trichloroethane	ND	5.0	"							
1,1,1-Trichloroethane	ND	5.0	"							
Trichloroethene	ND	5.0	"							
Trichlorofluoromethane	ND	5.0	"							
1,2,3-Trichloropropane	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
Benzene	ND	5.0	"							
Toluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
m,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
Surrogate: 4-Bromofluorobenzene	42.8		"	40.0		107	81.2-123			
Surrogate: Dibromofluoromethane	36.6		"	40.0		91.5	95.7-135			S-GC
Surrogate: Toluene-d8	38.4		"	40.0		95.9	85.5-116			
LCS (2062025-BS1)				Prepared:	06/20/12	Analyzed	1: 06/23/12			
Chlorobenzene	106	5.0	ug/kg	100		106	75-125			
1,1-Dichloroethene	81.9	5.0	"	100		81.9	75-125			
Trichloroethene	92.6	5.0	"	100		92.6	75-125			
Benzene	93.0	5.0	"	100		93.0	75-125			
Toluene	92.8	5.0	"	100		92.8	75-125			
Surrogate: 4-Bromofluorobenzene	44.8		"	40.0		112	81.2-123			
Surrogate: Dibromofluoromethane	43.2		"	40.0		108	95.7-135			
Surrogate: Toluene-d8	39.2		"	40.0		97.9	85.5-116			

SunStar Laboratories, Inc.

RPD

%REC

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 Reported:
Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	%KEC Limits	RPD	Limit	Notes
Batch 2062025 - EPA 5030 GCMS										
Matrix Spike (2062025-MS1)	So	urce: T12105	54-03	Prepared:	06/20/12	Analyzed	d: 06/23/12	,		
Chlorobenzene	103	5.0	ug/kg	100	ND	103	75-125			
1,1-Dichloroethene	79.0	5.0	"	100	ND	79.0	75-125			
Trichloroethene	87.0	5.0	"	100	ND	87.0	75-125			
Benzene	89.4	5.0	"	100	ND	89.4	75-125			
Toluene	89.2	5.0	"	100	ND	89.2	75-125			
Surrogate: 4-Bromofluorobenzene	46.8		"	40.0		117	81.2-123			
Surrogate: Dibromofluoromethane	44.7		"	40.0		112	95.7-135			
Surrogate: Toluene-d8	38.6		"	40.0		96.6	85.5-116			
Matrix Spike Dup (2062025-MSD1)	So	urce: T12105	64-03	Prepared:	06/20/12	Analyzed	d: 06/23/12			
Chlorobenzene	104	5.0	ug/kg	100	ND	104	75-125	0.917	20	
1,1-Dichloroethene	79.0	5.0	"	100	ND	79.0	75-125	0.0633	20	
Trichloroethene	87.8	5.0	"	100	ND	87.8	75-125	0.801	20	
Benzene	88.0	5.0	"	100	ND	88.0	75-125	1.64	20	
Toluene	88.2	5.0	"	100	ND	88.2	75-125	1.13	20	
Surrogate: 4-Bromofluorobenzene	48.8		"	40.0		122	81.2-123			
Surrogate: Dibromofluoromethane	43.3		"	40.0		108	95.7-135			
Surrogate: Toluene-d8	38.3		"	40.0		95.8	85.5-116			
Batch 2062105 - EPA 5030 GCMS										
Blank (2062105-BLK1)				Prepared:	06/21/12	Analyzeo	d: 06/26/12			
Bromobenzene	ND	1.0	ug/l	110parea.	00/21/12	1 11101) 200	00/20/12			
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
	ND	1.0	"							

SunStar Laboratories, Inc.

Batch 2062105 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Krazan, Clovis Project: Toyota of Escondido

Result

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Source

Result

%REC

Spike

Level

%REC

Limits

RPD

Blank (2062105-BLK1)				Prepared: 06/21/12 Analyzed: 06/26/12
4-Chlorotoluene	ND	1.0	ug/l	•
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	
p-Isopropyltoluene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

Styrene

1,1,2,2-Tetrachloroethane

1,1,1,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,2-Trichloroethane

1,1,1-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Tetrachloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saniel & Chivy

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2062105 - EPA 5030 GCMS										
Blank (2062105-BLK1)				Prepared:	06/21/12	Analyze	d: 06/26/12			
1,2,3-Trichloropropane	ND	1.0	ug/l							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Surrogate: 4-Bromofluorobenzene	7.82		"	8.00		97.8	83.5-119			
Surrogate: Dibromofluoromethane	7.42		"	8.00		92.8	81-136			
Surrogate: Toluene-d8	7.94		"	8.00		99.2	88.8-117			
LCS (2062105-BS1)				Prepared:	06/21/12	Analyze	d: 06/26/12			
Chlorobenzene	20.3	1.0	ug/l	20.0		101	75-125			
1,1-Dichloroethene	19.0	1.0	"	20.0		94.8	75-125			
Trichloroethene	18.8	1.0	"	20.0		94.1	75-125			
Benzene	19.7	0.50	"	20.0		98.3	75-125			
Toluene	18.6	0.50	"	20.0		93.2	75-125			
Surrogate: 4-Bromofluorobenzene	7.47		"	8.00		93.4	83.5-119			
Surrogate: Dibromofluoromethane	7.78		"	8.00		97.2	81-136			
Surrogate: Toluene-d8	7.33		"	8.00		91.6	88.8-117			
LCS Dup (2062105-BSD1)				Prepared:	06/21/12	Analyze	d: 06/26/12			
Chlorobenzene	19.7	1.0	ug/l	20.0		98.4	75-125	2.90	20	
1,1-Dichloroethene	19.5	1.0	"	20.0		97.4	75-125	2.60	20	
Trichloroethene	19.0	1.0	"	20.0		95.2	75-125	1.11	20	
Benzene	19.8	0.50	"	20.0		99.0	75-125	0.659	20	
Toluene	18.0	0.50	"	20.0		90.0	75-125	3.49	20	
Surrogate: 4-Bromofluorobenzene	7.17		"	8.00		89.6	83.5-119			
Surrogate: Dibromofluoromethane	8.30		"	8.00		104	81-136			
Surrogate: Toluene-d8	7.07		"	8.00		88.4	88.8-117			S

SunStar Laboratories, Inc.

Krazan, Clovis Project: Toyota of Escondido

215 West Dakota Avenue Project Number: 014-12085 **Reported:**Clovis CA, 93612 Project Manager: Mike Bowery 06/27/12 16:09

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

D-03 The result for the hydrocarbon range is due to the presence of a single analyte peak(s) in the quantitation range. It does not resemble

the requested pattern.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

										₹ 	Pickup			Return to client	Return) each	Disposal @ \$2.00 each	Disposa	ructions:	Sample disposal Instructions:	ple disp	Samp
				ne:	Turn around time:	arou	Turn																
			ŗ						Date / Time	ate /	o.		nature)	y: (sig	Received by: (signature)	Z)	Time	Date / Time		Relinquished by: (signature)	ed by: (s	nquish	Relin
			good condition/cold	d condit		Received	Re																
			Seals intact? Y/N/NA	intact?	Seals				Daté / Time	até /	٥		nature)	y: (sig	Received by: (signature)	ZD	Time	Date / Time	, <	Relinquished by: (signature)	ed by: (s	nquish	Relin
			Chain of Custody seals Y/N/NA	y seals	Sustod	in of C	Cha	77.90		chaliz	0			\mathbb{V}	Y	2	زب	7 12	0		100	2	
	Notes		Total # of containers	# of co	Total			Ì	Time	Date /	Ď	1	(signature)	5 H .	Received by:	\ R	Time	Date /		Relipquished by: (signature)	d by: (s	guish	R
		15			\vdash				-	-	_	-					12,4		_	0	0 10	2 2	
		14				ļ		T	_	\vdash	H				_	86.2	2	_			23	3-4	
		/3				_			\vdash	\vdash	_	<u> </u>				200	=			o	23	3-3	
		3			\vdash			T	\vdash	 	╁	<u> </u>				æ	F.	-		7	0	7.3	5
		*			H						<u> </u>	_	-	-		9	<u> </u>	_		0	011	8-3	
		10			-	_		<u> </u>	<u> </u>	_	<u> </u>	<u> </u>				06		_		<u> </u>	20	7/2	
		9			_			Γ	\vdash	_	-	<u> </u>				197	10:2	_		01	22	2-2	
		80			_	_				L		_				:23	16			_	615	7-7	
		9						ļ		_	_	<u> </u>				10.50	10				010	7-7	
		90							ļ 	_	_	_	_			2);	10:12			S. C.	070	8-2	
		S						<u> </u>	-	-		<u> </u>				9 : 40	ی			1.5	9 2	7	
		40								_	ļ					130	7	_		0	0 7	1-1	_
		20									<u>. </u>				-	26	5.			7	_	√ − [ے م
		50							-		-	<u> </u>				22	٥	_	_	٦-	0 0	2-1	
		10						_		-			花木	Acetate	\ 	20	2.5	18 12	6	-	50	1-8	_^
Total # of containers	Comments/Preservative	Laboratory ID#			6010/7000 Title 22 Metals	8015M Ext./Carbon Chain	8015M (diesel) 8015M Ext./Carbon Chain	8015M (gasoline)	8270 Batch 8021 BTEX #		8260 + OXY 8260 BTEX, OXY only	8260	Container	O	Sample		σ	lg I L	Date Sar	3	Project Manager:	ect Ma	Proje
1	ts con 2/20 Client Project #: 0/4-/20%	Clien Y	70	2 2	35,	130	3':		Project Na Collector:	ဂ္ဂ္က			_			प	Fax:	Pak	77.00	2h8	22	Address:_ Phone: `	Address Phone:_
	je: Of 4	Page:		- 1	12	15		6	Date:_	Ď					tes) o C ce	0 / 5	7	2	02a	个	.₽ 	Client:

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

										1		Pickup	P		Return to client	Return	ach	Disposal @ \$2.00 each	Disposa	Sample disposal Instructions:	disposal I	Sample
	ı				f time:_	nd ti	Turn around	un.														
										me	Date / Time	Dat			Received by: (signature)	Received by	ne	Date / Time		Relinquished by: (signature)	ished by	Relinqu
			/cold	dition	Received good condition/cold	d goo	eive	Rec	L.,													
			ANN	t? Y/I	Seals intact? Y/N/NA	Seals	4-			me	Date / Time	Date		-	Received by: (signature)	Received by	ne	Date / Time	_	Relinquished by: (signature)	ished by	Relinqu
			ANN	is Y/f	Chain of Custody seals Y/N/NA	ustoc	ı of C	Chair		(",	1/2	10	5	and a	7	A	1.55	77	16119		8	IN
	Notes		iners	conta	Total # of containers	Tota			\$	Time	\ " ∃	Date /	1	V	y: (signature)	Received by:	. a	Date / Time		Relinquished by: (signature)	ished by	Relinqu
		30				_	_								_		3-54		_	Q	76	\$ -
		29				_	<u> </u>	_									3150		_	\ \`\	0	N,
		28					-		_								Shir			74'	0	6
		27				-	\vdash	_	<u> </u>					<u> </u>			2:40			100	0	2
		26			_	<u> </u>	-	_	_								7:38			, -	O(2-0
		25			-	\vdash	\vdash										536			0 '	6	8-6
		24				-	\vdash	_	_								127			_	8) 8)	SV
		23				<u> </u>	_	_	<u> </u>	_				Г		-	2115	-		72	9	2-5
		22				_	_	_	_	L	Ĺ						200,7			20	0 3	2-2
		2/				\vdash	_		_	L	Ĺ			Γ			 	_		5	ø,	2/2
		8				-	_	_	<u> </u>								1.1/2			C -	0	13-5
		10				-	\vdash	_	<u> </u>	_	L		Γ	T			1:30			٠ <i>١</i>	203	R-
	,	/8			_	<u> </u>	-										1:05			124	0	8/4
		17				-	-	-	_								122	' /	٠,	70-	b	3-4
		16				-	_	_							Robert	So :	96:21	212	6/1	15	24-	B
Total # of containers	Comments/Preservative	Laboratory ID #				100 TO TOUC THIE ZZ IVIETAIS	8015M Ext./Carbon Chain 6010/7000 Title 22 Metals	8015M (diesel)	8015M (gasoline)	8021 BTEX	8270	8260 BTEX, OXY only	8260 + OXY	8260	Container Type	Sample Type	Time	Date Sampled	Date		Sample ID	
1	EDF #:	Ē					34	7121054	li	Batch #:	Bat									er:	Project Manager:	Project
, ,	Client Project #: Q 4-1285	Clie							7	Collector:	င္တ			•			Fax:					Phone:
1								,	Project Name	ect	Pro			1							į.	Address:
1	Page: C of 9	Pa			۲		3	-		 :ib	Date:			1)	197	A R		Client:
)																					

Sample disposal Instructions: Disposal @ \$2.00 each Project Manager: Client: Relinquished by: (signature) Relinquished by: (signature) Address: inquisher by: (signature) Sample ID Date Sampled Ha Ha Date / Time Date / Time Date / Time 7 10.4 500 CI : 20 4:39 810 25.50 2/5 40. h Time 3 Received by: (signature) Received by: (signature) Received by: Sample Return to client Actat Container Type Clas 8260 8260 + OXY Pickup Date / Time Date / Time Date / Time 8260 BTEX, OXY only Batch #:_ Collector: Project Name: Date:_ 8270 8021 BTEX 8015M (gasoline) 7121054 Turn around time: Chain of Custody seals Y/N/NA 8015M (diesel) Received good condition/cold 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals Seals intact? Y/N/NA Total # of containers 24 42 11 40 38 37 35 EDF#: 2 22 37 3 Client Project #: Page: Laboratory ID # Comments/Preservative 58021-110 Notes Total # of containers

949-297-5020

SunStar Laboratories, Inc 25712 Commercentre Dr Lake Forest, CA 92630

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Relinquished by: (signature)		Relinquished by: (signature)		Relinquished by: (signature)				3 14208-5			6-6	\$- Y	8-3	رح.	1	3-13051 16	B-12851 6	Sample ID Da	Project Manager:	Phone:	Address:	Client: Kalar
Date / Time F		Date / Time	19/12 255	Date / Time			-	15/12 8.18	1		12 1 2 1 X	12	18/12	12/12	19/12 10	119/12 1:43	119/12 1:31 1	ațe Sampled Time		Fax:		2
Received by: (signature,		Received by: (signature)		Received by: (signature)				Jour Acord	,		\ 			1.		AG	/ A	Cc				
) Date / Time) Date / Time	our shelie	Date / Time														8260 + OXY 8260 BTEX, OXY only 8270 8021 BTEX	Batch #:1	_ Collector:_	Project Nar	Date: k
	Received good condition/cole	Seals intact? Y/N/N/	Chain of Custody seals Y/N/N/															8015M Ext./Carbon Chain	7/21054		ne:	6/19/12
	ă	Ā	Ā	ers Notes				55					88		2 401 8015, 2 8260	47			EDF #:	Client Project #: 0/4-12085	-	Page: 4 of 4
	Date / Time Received by: (signature) Date / Time	Date / Time Received by: (signature) Date / Time	Date / Time Received by: (signature) Date / Time Date / Time Received by: (signature) Date / Time	Date / Time Received by: (signature) Date / Time Date / Time Received by: (signature) Date / Time	Date / Time Received by: (signature) Date / Time Received by: (signature) Date / Time Received by: (signature) Date / Time Received good condition/cold Date / Time Received by: (signature) Date / Time Received good condition/cold Date / Time Received by: (signature) Date / Time Received good condition/cold	Date / Time Received by: signature) Date / Time Acceived by: signature) Date / Time Received by: (signature) Date / Time Received by: (signature) Date / Time Received by: (signature) Date / Time Received good condition/cold	Date / Time Received by: /signature) Date / Time Received by: /signature) Date / Time Received by: (signature) Date / Time Received good condition/cold	Date / Time Received by: signature) Date / Time Received by: signature) Date / Time Received by: (signature) Date / Time Received good condition/cold	Color Act Ac	Date / Time Received by: (signature) Date / Time Received by: (signature) Date / Time Received by: (signature) Date / Time Received by: (signature) Date / Time Received good condition/cold Received by: (signature) Date / Time Received good condition/cold Received good condition/cold Received by: (signature) Date / Time Received good condition/cold	Collegion 10:15 Colleg	C	C	C 18 12 11:55 50 51 52 52 53 54 54 54 54 54 54 54	Co 18 12 11:35 25 25 25 25 25 25 25	Collegion 10:30 10:45	C	C	Date Sampled Time Sample Container	Date Time Sample Container Sample Container C	Collector: Col	Sample ID Date Sample Container Collector Co

SAMPLE RECEIVING REVIEW SHEET

BATCH #				
Client Name: <u>Krazan</u> Project: <u>To-</u>	YOTA OF	Eccondit	00	
Received by: Brian Date/Time Re	eceived:	119/12 19	<i>::5</i> S	······································
Delivered by:	Other			
Total number of coolers received 2 Temp criteria = 6°C	> 0°C (no !	<u>frozen</u> con	tainers)	
Temperature: cooler #1 $\underline{/3.4}$ °C +/- the CF (-0.2°C) = $\underline{/3.2}$ °C corre	cted temperatu	ıre	÷	
cooler #2°C +/- the CF (- 0.2°C) =°C corre	ected temperati	ıre		
cooler #3°C +/- the CF $(-0.2$ °C $)$ =°C corre	ected temperatu	ıre		
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	⊮Yes	□No*	□N/A	
Custody Seals Intact on Cooler/Sample	∐Yes	□No*	XN/A	
Sample Containers Intact	¥Yes	□No*		
Sample labels match COC ID's	Yes	□No*	e e e e e e e e e e e e e e e e e e e	
Total number of containers received match COC	∠Yes	□No*		
Proper containers received for analyses requested on COC	∠ Yes	□No*	•	
Proper preservative indicated on COC/containers for analyses requested	⋉Yes	□No*	□N/A	
Complete shipment received in good condition with correct temperatures, or preservatives and within method specified holding times. X Yes N	containers, l o*	abels, volu	mes	
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample	Review - Initi	als and date	BC 6/1	9/12
Comments:				
· · · · · · · · · · · · · · · · · · ·				
			-	